

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE GEOCIÊNCIAS CURSO DE GRADUAÇÃO EM GEOFÍSICA

GEO213 – TRABALHO DE GRADUAÇÃO

CONDUTIVIDADE TÉRMICA, DIFUSIVIDADE TÉRMICA E CALOR ESPECÍFICO EM ROCHAS ÍGNEAS E METAMÓRFICAS: COMPORTAMENTO ISOTRÓPICO E ANISOTRÓPICO

CLERISTON FERREIRA SILVA

SALVADOR – BAHIA

Julho- 2010

Condutividade Térmica, Difusividade Térmica e Calor Específico em Rochas Ìgneas e Metamórficas: Comportamento Isotrópico e Anisotrópico

por

CLERISTON FERREIRA SILVA

GEO213 – TRABALHO DE GRADUAÇÃO

Departamento de Geologia e Geofísica Aplicada

DO

Instituto de Geociências

DA

UNIVERSIDADE FEDERAL DA BAHIA

Comissão Examinadora

- Dr. Roberto Max de Argollo(Orientador)
- Dr. Alexandre Barreto Costa
- Dr. Moacyr Moura Marinho

Data da aprovação: 15/07/2010

Dedico este trabalho aos meus pais

RESUMO

Condutividade térmica, capacidade calorífica volumétrica, difusividade térmica, densidade e calor específico foram determinados em 102 amostras de 15 litotipos diferentes de rochas ígneas e metamórficas do embasamento adjacente às bacias sedimentares do nordeste brasileiro. A condutividade térmica nessas rochas variou de 0,76 a 6,72 W m^{-1} °C⁻¹, a difusividade térmica entre 0,52 e 2,96 $m^2 s^{-1}$ e o calor específico entre 0,46 e 0,90 Jkg^{-1} °C⁻¹.

As rochas ígneas intrusivas como granitos e gabronoritos apresentaram comportamento isotrópico, apesar de seus minerais constituintes serem anisotrópicos. As rochas metámorficas sem foliação como metacalcários, enderbitos, charnoquitos, charnoenderbitos, metarenitos e quartzitos mostraram comportaramento isotrópico, enquanto aquelas com foliação como biotita gnaisses, metarenitos xistosos, filitos, siltitos, meta-ritmitos, xistos e ortognaisses comportaram-se anisotropicamente. Dentre essas, os xistos apresentaram os maiores fatores de anisotropia tendo uma amostra chegado a 3,2.

Nossa conclusão que o comportamento anisotrópico nas rochas deve-se, principalmente a efeitos estruturais como xistosidade, foliação e lineação.

ABSTRACT

Thermal conductivity, volumetric calorific capacity, thermal diffusivity, specific heat and density were determined in 102 samples of 15 of igneous and metamorphic lithotypes from outcrops of the basement rocks adjacent to the sedimentary basins of the Brazilian north-eastern region. The thermal conductivity in these rocks varied from 0,76 to 6,72 $Wm^{-1\circ}C^{-1}$, the thermal diffusivity varied between 0,52 and 2,96 m^2s^{-1} and the specific heat between 0,46 and 0,90 $Jkg^{-1\circ}C^{-1}$.

The intrusive igneous rocks (for example, granite and gabronorite) shown an isotropic behavior in spite of the anisotropic nature of their constituent minerals. Non-foliated metamorphic rocks (meta-limestone, enderbite, charnockite, charnoenderbite, meta- sandstone and quartzite) shown an isotropic behavior, while foliated ones (biotite gneiss, metasandstone schist, phyllite, siltite, meta-ritmito and orthogneiss) have shown anisotropic behavior. Among those, the schists have presented the biggest anisotropy factors having a sample reached near 3,2.

We concluded from this work that the anisotropic behavior shown by the studied rocks is due, mainly, to structural effects like schistosity, foliation and lineation.

ÍNDICE

RESUMO		iii
ABSTRACT		iv
ÍNDICE		v
ÍNDICE DE FIGUI	RAS	vii
INTRODUÇÃO		1
CAPÍTULO 1 F 1.1 Densidade de 1.2 Propriedades 1 1.2.1 Condur 1.2.2 Medida 1.2.3 Influên 1.2.4 Influên 1.2.5 Condur 1.2.6 Calor e	undamentação teórica	$ \begin{array}{r} 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 8 \\ 9 \\ 11 \\ 14 \\ \end{array} $
2.1 Propriedades	térmicas das rochas	14
2.2 Medida de de	nsidade	15
CAPÍTULO 3 R	esultados e discussão	18
3.1 Efeito da anis	sotropia na condutividade térmica e na difusividade térmica	21
CAPÍTULO 4 C	onclusões	35
Agradecimentos		36
APÊNDICE A Lá	itologia, localização, e coordenadas das amostras da rea de estudo	37
APÊNDICE B La cu ca	itologia, condutividade térmica (paralela e perpendi- ular), difusividade térmica (paralela e perpendicular) e alor específico das amostras da área de estudo	43

APÊNDICE C	Composição mineralogica de algumas amostras	•••	49
Referências Biblic	ográficas		53

ÍNDICE DE FIGURAS

1.1	Valores médios (símbolos) e taxas de variação (barras verticais) da condu- tividade térmica (K) com a temperatura T, para (a) rochas magmáticas e metamórficas e (b) rochas sedimentares	7
1.2	Valores de medidas de laboratório de condutividade térmica (barra verti- cal),valores médios (simbolos) e fator de anisotropia (quadrados) de 26 amos- tras de rochas saturadas com água a condições ambientes (25°C): plano de medida (a) paralelo e normal à lineação; (b) paralelo e normal aos planos de acamamentos foliação e xistosidades das rochas 2(1)	12
2.1	Analisador $Quickline^{TM}$ -30 da Anter Corporation utilizado na medição das propriedades térmicas de rochas. As medidas são feitas em duas faces planas polidas o perpendiculares ente si	15
2.2	Picnômetro de água vendo-se uma amostra no interior do cilindro transparente	15 16
3.1	Variação dos valores de condutividade térmica (a) paralela (K_{\parallel}) e (b) perpendicular	
	(K_{\perp}) para os diversos litotipos estudados	19
3.2	Variação dos valores de difusividade térmica (a)paralela (K_{\parallel}) e (b)perpendicular	
	(K_{\perp}) para os diversos litotipos estudados	20
3.3	Relação da condutividade térmica (K) com a porcentagem de quartzo	20
3.4	Variação do calor específico para os diversos litotipos estudados	21
3.5	Condutividade térmica (a) e difusividade térmica (b), valores médios para-	
	lelos e perpendiculares entre si, e paralelas e perpendiculares aos planos de lineação para as amostras 04,05 e 06 (granitos lineados) e fatores de anisotro-	
	pia (quadrados no topo), de oito amostras de granitos em condições ambientais	
	e composição mineralógica das amostras de numero 1, 2, 3 e 8	23
3.6	Condutividades térmicas (a) e difusividades termicas (b), pralelas e perpendi-	
	culares de sete amostras de quartzitos em condições ambientais e composição	
	mineralógica das amostras de numero 3, 4 e 5.	24
3.7	Condutividades térmicas (a) e difusividades termicas (b), pralelas e perpen-	
	diculares de seis amostras de biotita gnaisse em condições ambientais e com-	
	posição mineralógica das amostras de numero 3, 5, e 6	25
3.8	Condutividades térmicas (a) e difusividades termicas (b), pralelas e perpen-	
	diculares de oito amostras de charnoquitos em condições ambientais e com-	
	posição mineralógica das amostras de numero 1,3,4, e 5	26

3.9	Condutividades térmicas (a) e difusividades termicas (b), pralelas e perpen-	
	diculares de sete amostras de enderbitos e charnoenderbitos em condições	
	ambientais e composição mineralógica das amostras de numero 1, 5, 6 e 7.	27
3.10	Condutividade térmica, valores médios paralelos e perpendiculares aos planos	
	de foliação e fatores de anisotropia (quadrados no topo), de oito amostras de	
	metacalcários, cinco de arenito xistoso e quatro de gabronoritos em condições	
	ambientais	28
3.11	Difusividade térmica, valores médios paralelos e perpendiculares aos planos	-
0.11	de foliação e fatores de anisotropia (quadrados no topo) de oito amostras de	
	metacalcários cinco de arenito xistoso e quatro de gabronoritos em condições	
	ambientais	29
3 12	Condutividades térmicas (a) e difusividades termicas (b) pralelas e perpen-	20
0.12	diculares de oito amostras de filitos em condições ambientais	30
3 13	Condutividades térmicas (a) e difusividades termicas (b) pralelas e perpen-	00
0.10	diculares de seis amostras de siltitos e metarritmitos em condições ambientais	
	diculares de sels amostras de situtos e metarminitos em condições ambientais	31
3 14	Condutividados tármicas (a) a difusividados tarmicas (b) pralalas a porpondi	01
0.14	cularos dotrozo amostras do motaronitos om condições ambientais o composição	
	minoralógica das amostras de numero 11, 12 o 12	20
9 1 F	Conductivida das términas (a) a diferinida das terminas (b) medalas a norman	32
3.15	Condutividades termicas (a) e difusividades termicas (b), praieias e perpen-	
	diculares de nove amostras de xistos em condições ambientais e composição	
	mineralògica das amostras de numero 6, 8 e 9. \dots \dots \dots \dots	33
3.16	Condutividades térmicas (a) e difusividades termicas (b), pralelas e perpendi-	
	culares de onze amostras de ortognaisse e composição mineralógica das amos-	
	tras de numero 3, 4, 5 e 6	34

INTRODUÇÃO

As propriedades térmicas das rochas são parâmetros importantes para o entendimento dos fenômenos geodinâmicos relacionados com a história das bacias sedimentares. A condutividade térmica das rochas, por exemplo, é um dos fatores importantes que afetam os gradientes de temperaturas em bacias sedimentares e, portanto, tem de ser considerada no estudo termo-mecânico de bacias. Segundo Blackwell e Steele (1989) a estrutura térmica de uma bacia pode mudar lateralmente e verticalmente devido a condutividades térmicas diferentes em diferentes litotipos, até mesmo se o fluxo de calor no interior da bacia for regionalmente igual.

Embora exista consenso sobre a importância da condutividade térmica em estudos termo-mecânicos de bacias, poucos trabalhos têm sido feitos na medida desse parâmetro numa variedade extensa de rochas ígneas e metamórficas como também na análise do efeito da anisotropia em diferentes tipos de rochas. As propriedades térmicas são, também, de grande importância em várias áreas das ciências da Terra, tais como energia geotérmica, formação e evolução de reservatórios de hidrocarbonetos e de alguns depósitos minerais. Essas propriedades dependem de vários fatores tais como a composição mineralógica, tipo e quantidade de fluido no espaço poroso, porosidade, pressão, densidade, temperatura e anisotropia já que nem todas as rochas têm um comportamento isotrópico.

Para rochas vulcânicas e plutônicas, as propriedades térmicas, na maioria das vezes, comportam-se isotropicamente. Já para muitas rochas sedimentares e metamórficas, as propriedades térmicas são bastante anisotrópicas e inomogêneas e isso se deve à orientação dos minerais que compõem essas rochas a qual está possivelmente relacionada aos vários efeitos estruturais (Clauser e Huenges, 1995). Aqueles autores afirmam ainda que, geralmente, a condutividade térmica é menor na direção perpendicular do que na direção paralela aos planos de foliação, xistosidade, acamamento e lineação.

Bunterbarth et al.(1984) verificaram que quando as rochas são formadas ou deformadas num campo de pressão é produzida uma orientação de seus grãos minerais e que esse fenômeno é típico no caso de regiões de metamorfismo. Agregados granoblásticos podem mostrar uma orientação de seus retículos cristalinos sem uma elongação na forma de seus grãos. Aqueles autores afirmam, ainda, que a maior parte da orientação preferencial envolve alinhamento paralelo dos grãos alongados e é facilmente detectado. Em muitas rochas, esse alinhamento é bastante forte e pode ser geralmente visto a olho nu, tanto como uma foliação (planar ou estruturas finas) quanto lineação (alinhamento paralelo de minerais prismáticos ou agregados de minerais como linhas). Segundo aqueles autores o comportamento anisotrópico de alguns minerais está relacionado com o hábito dos monocristais; como exemplos têm-se o quartzo, a turmalina, a mica e outros minerais que possuem superfície de clivagem e são altamente anisotrópicos.

Num cristal anisotrópico, a condutividade térmica vária de acordo com sua orientação cristalográfica. Como exemplo, tem-se o cristal de quartzo onde a condutividade térmica é quase duas vezes maior quando medida paralela ao chamado eixo-c comparada com a condutividade perpendicular a este eixo (Ratcliffe. et al., 1959).

Segundo Seipold e Huenges (1998) a anisotropia da condutividade térmica, especialmente para gnaisse, é afetada pela estrutura da rocha como foliação e lineação. Aqueles autores afirmam, ainda, que geralmente a condutividade térmica é mais baixa na direção perpendicular do que na direção paralela ao plano de foliação em rochas metamórficas, em concordância com (Clauser e Huenges, 1995).

Wall et al. (1991) estudaram o efeito da anisotropia em rochas metamórficas altamente foliadas e em rochas com orientação preferencial nos seus grãos minerais (lineação). Eles verificaram que para rochas altamente foliadas a diferença entre os valores médios das condutividades perpendiculares e paralelas ao plano de foliação é de aproximadamente 60%, e que essa diferença para rochas com plano de lineação é de 20%. Segundo aqueles autores, a anisotropia menor observada em rochas com lineação está relacionada com o fato de que, nesse tipo de rocha, os grãos de quartzo são fracamente orientados e, apesar de o quartzo ser um mineral altamente anisotrópico, sua presença em rochas com lineação não tem muita influência para a anisotropia. A orientação das micas (biotita e moscovita) em algumas rochas metamórficas altamente foliadas (gnaisse, xisto, etc.) seria a razão para a anisotropia observada nessas rochas e isso se deve à forte anisotropia apresentada pelas micas.

Hans-Dieter e Rüdiger (2003) verificaram que a condutividade térmica em rochas magmáticas intrusivas e efusivas é quase isotrópica, enquanto que nas rochas metamórficas xistosas ela é fortemente anisotrópica. Segundo aqueles autores, os altos valores de anisotropia em rochas com foliação visível podem ser provavelmente interpretados devida à alternação de camadas, contendo diferentes tipos de minerais com condutividades térmicas altas e baixas (exemplo camadas de micas, quartzo ou feldspato respectivamente) ou uma alta quantidade de minerais orientados com alta anisotropia (micas).

Objetivamos, neste trabalho, medir as propriedades térmicas (condutividade térmica, difusividade térmica e o calor especifico) numa grande variedade de litotipos presentes no embasamento adjacente às bacias litorâneas do nordeste brasileiro e estudar o efeito da anisotropia dessas propriedades nesses diferentes tipos de rochas. O presente trabalho inserese nos objetivos do projeto GEOTERM-NE o qual visa estudar as propriedades térmicas das rochas do embasamento das bacias litorâneas do nordeste brasileiro.

CAPÍTULO 1

Fundamentação teórica

1.1 Densidade de fluxo de calor, Condutividade térmica, Difusividade térmica

O calor que penetra na base da crosta terrestre vindo do interior da terra mais o calor produzido na própria crosta constituem o fluxo de calor na superfície. Na crosta, o calor é transportado principalmente por condução que é o processo pelo qual a energia é transportada ao longo do sólido pelas vibrações dos átomos e moléculas na estrutura dos minerais. Se num dado ponto do espaço existe um gradiente de temperatura diferente de zero, então ocorrem processos de equilíbrio que contribuem para a diminuição desse gradiente, contanto que nesse ponto não existam fontes adicionais de calor ou absorção. Durante o processo de equilíbrio o fluxo de calor é transportado seguindo principalmente na direção do gradiente de temperatura. Este fluxo de energia, normalizado em relação ao tempo e área, é chamado de densidade de fluxo de calor Q (W m^{-2});Q é proporcional ao gradiente de temperatura e é definido pela expressão

$$\vec{Q} = -\mathbf{K}\nabla T \tag{1.1}$$

onde T = T(x, y, z, t) é a temperatura e K, o fator de proporcionalidade, é denominado condutividade térmica do material ($Wm^{-1}\circ C^{-1}$). A densidade do fluxo de calor é uma grandeza vetorial de modo que o fluxo de calor e o gradiente de temperatura podem ser considerados como campos vetoriais no espaço.

A condutividade térmica é uma propriedade petrofísica do material e pode ser definida como a habilidade de um material em conduzir calor. Para materiais anisotrópicos (por exemplo, minerais formadores de rocha como quartzo, feldspato, e mica) a condutividade térmica é um tensor e, neste caso, o fluxo de calor não se alinha obrigatoriamente com o gradiente térmico. Para cristais isotrópicos (por exemplo, minerais com simetria cristalina cúbica como granada, sal-gema e galena) a condutividade térmica pode ser reduzida a um escalar, pois apenas os componentes K_{11} , K_{22} , K_{33} do tensor **K** são diferentes de zero e têm o mesmo valor. Um corpo com estas propriedades é chamado isotrópico, entretanto, muitos minerais formadores de rochas tal como quartzo, feldspato, e mica são anisotrópicos (Clauser e Huenges, 1995).

A capacidade térmica volumétrica, C, é outra propriedade térmica importante dos materiais. Ela é uma medida quantitativa do calor necessário para elevar uma unidade de volume do material de uma unidade de temperatura; no SI, C é expressa em $Jm^{-3\circ}C^{-1}$. Para um material sujeito a um dado fluxo de calor, quanto menor for seu valor C maior será sua variação de temperatura.

A capacidade térmica por unidade de massa do material é denominada calor específico o qual é denotado por c $(Jkg^{-1}C^{-1})$ e definido pela expressão

$$c = \frac{C}{\rho},\tag{1.2}$$

onde $\rho(\text{kg } m^{-3})$ é a densidade do material.

A difusividade térmica, outra propriedade térmica dos materiais, expressa a qualidade do material em difundir calor. Ela é denotada por $\kappa(m^2 \ s^{-1})$ e definida como a razão entre a condutividade térmica K e a capacidade térmica volumétrica C, ou seja

$$\kappa = \frac{K}{C} = \frac{K}{\rho c}.$$
(1.3)

1.2 Propriedades térmicas de rochas comuns

1.2.1 Condutividade térmica

A condutividade térmica de uma rocha é condicionada pela condutividade térmica dos minerais que a compõe. Essa propriedade regula a quantidade de calor possível de ser transmitida por unidade de tempo através de uma superfície sob determinado diferencial de temperatura. A condutividade térmica expressa a habilidade de um material em conduzir calor, ou seja, materiais com condutividade térmica alta são bons condutores de calor e condutividade baixas caracterizam os materiais designados como isolantes.

O parâmetro K é de grande importância no estudo do transporte de calor na crosta terrestre; ele controla o fluxo de calor em camadas individuais da crosta sob condições estacionarias como também determina a escala de tempo para os processos transientes tal como o esfriamento de corpos intrusivos.

A condutividade térmica varia em algumas ordens de grandeza para diferentes materiais na natureza. Por exemplo, a 20°C é da ordem de 0,03 W m^{-1} °C⁻¹ para o ar, 0,6 W m^{-1} °C⁻¹ para a água, 2 a 7,2 W m^{-1} °C⁻¹para rochas. O sal, com K = 6,1 W m^{-1} °C⁻¹ a 20°C, está entre as rochas mais condutivas das bacias sedimentares, explicado por apresentar porosidade muito baixa, portanto quase ausência de fluidos insulantes. A tabela 1.1 apresenta valores de condutividade térmica, de difusividade térmica e de calor específico para algumas rochas

Litologia	$K[Wm^{-1}\circ C^{-1}]$	$\kappa[\times 10^{-6}m^2/s]$	$c[\times 10^3 J k g^{-1} \circ C^{-1}]$
Calcário	2,2-2,8	1,1	0,84
Ardósia	2,4	1,2	-
Arenito	3,2	1,6	-
Carvão Betuminoso	0,26	0,15	1,38
Sal	$5,\!5$	3,1	-
Gnaisse	2,7	1,2	-
Granito	2,6	1,4	0,79
Gabro	2,1	-	0,84
Peridotito	3,8	-	-
Biotita Gnaisse	3,93	-	_
Tonalito	2,61	-	-

Tabela 1.1: Condutividade térmica (K), difusividade térmica (κ) e calor específico (c) para algumas litologias sob condições normais compilados de vários autores.

1.2.2 Medida de Condutividade térmica

A condutividade térmica duma rocha depende não apenas de sua composição mineralógica, tipo e quantidade de fluidos no seu interior, densidade e porosidade (Clauser e Huenges, 1995), mas também da temperatura, pressão e condições de anisotropia.

A condutividade térmica pode ser avaliada por dados indiretos, como composição mineralógica. Assim, uma condutividade máxima pode ser calculada através do valor da média aritmética ponderada

$$Kmax = \sum_{i} p_i K_i \tag{1.4}$$

e um valor mínimo através da média harmônica ponderada(Buntebarth, 1984)

$$\frac{1}{K_{min}} = \sum_{i} \frac{p_i}{K_i} \tag{1.5}$$

onde p_i é a fração da iésima fase mineral cuja condutividade é $K_i \in \sum_i p_i = 1$.

O quartzo é um bom condutor de calor de modo que as rochas mostram uma tendência crescente de condutividade térmica com a proporção de quartzo. Assim, quanto mais ácida for a rocha maior será sua condutividade térmica. Para os granitos, K varia de 2,5 a 4 Wm^{-1} °C⁻¹ com a fração de quartzo variando de 20 a 35% (Birch e Clark, 1940) . Já um aumento da proporção de plagioclásio, especialmente de plagioclásio anortítico diminui a condutividade térmica das rochas devido à baixa condutividade desse mineral (Birch e Clark, 1940; Horai e Simmons, 1969).

1.2.3 Influência da temperatura na condutividade térmica

A condutividade térmica na litosfera é governada por dois mecanismos: a rede ou fônon e condutividade por radiação, sendo ambas dependentes da temperatura. Até uma temperatura de cerca de 700 °C, o transporte de energia térmica em rochas é devido principalmente às interações de redes não-harmônicas. Essa condutividade, K_L , é mostrada ser inversamente proporcional à temperatura absoluta T ou seja

$$K_L \sim \frac{1}{T} \tag{1.6}$$

A explicação para tal comportamento é que as expansões térmicas devidas ao aumento da temperatura ocorrem de forma diferecial para cada mineral causando um "craqueamento térmico" nos minerais. Essa quebra cria resistências de contato entre os grãos dos minerais contribuindo, assim, para um decréscimo na condutividade térmica com a temperatura (Clauser e Huenges, 1995). Experimentos (Schatz e Simmons, 1972) confirmam a relação 1.6 e mostram que condutividade térmica em rochas acima de aproximadamente T = 700 °C pode ser expressa por

$$\frac{1}{K_L} = a + bT \tag{1.7}$$

onde a e b são constantes.

A figura 1.1, a e b, mostra a dependência da condutividade térmica com a temperatura na faixa de 0 a 500°C para rochas magmáticas, metamórficas e sedimentares medidas em amostras secas e usando um aparelho de barra dividida (Hans-Dieter e Rüdiger, 2003). Observe que a condutividade térmica diminui sensivelmente com o aumento da temperatura.

Num modelo simples, pode-se dividir a litosfera continental, por exemplo até duas centenas de quilômetros para baixo, em três camadas: uma crosta superior rica em sílica, uma crosta inferior intermediaria a básica e o manto superior rico em olivina. Para essas camadas, Schatz e Simmons (1972) obteve as expressões seguintes para a dependência da condutividade média com a temperatura, com K em Wm^{-1} °C⁻¹ e T em °C:

crosta superior:
$$K_L^{-1}[m^{\circ}K/W] = 0,33 + 0,33 \times 10^{-3}T[^{\circ}C]$$
 (1.8)

crosta inferior:
$$K_L^{-1}[m^{\circ}K/W] = 0, 41 + 0, 29 \times 10^{-3}T[^{\circ}C]$$
 (1.9)

manto superior:
$$K_L^{-1}[m^{\circ}K/W] = 0, 21 + 0, 50 \times 10^{-3}T[^{\circ}C]$$
 (1.10)

Figura 1.1: Valores médios (símbolos) e taxas de variação (barras verticais) da condutividade térmica (K) com a temperatura T, para (a) rochas magmáticas e metamórficas e (b) rochas sedimentares (Hans-Dieter e Rüdiger, 2003).

Essas equações descrevem a contribuição por fônos apenas, mas as temperaturas no manto superior já são suficientemente altas para que a contribuição da condutividade pela radiação seja levada em consideração. Essa contribuição da radiação, K_R , é mostrada experimentalmente crescer linearmente com a temperatura, apesar de a predição teórica ser um crescimento com T^3 . Atribui-se essa discrepância, parte ao espalhamento na superfície dos grãos de minerais e parte à absorção por átomos de ferro na região infravermelha. Para um manto superior rico em olivina, K_R é dada pela equação (Schatz e Simmons, 1972)

$$K_R = -0,52 + 2,3 \times 10^{-3}T \tag{1.11}$$

para $T > 230^{\circ}$ C

Com K dado em W m^{-1} °C⁻¹ e T em °C.

A condutividade total resultante é a soma das duas contribuições:

$$K = K_L + K_R \tag{1.12}$$

1.2.4 Influência da pressão na condutividade térmica

Sob baixa pressão, todas as rochas possuem uma porosidade consistindo de espaços vazios entre grãos minerais e micro fraturas que ocorrem tanto entre como no interior dos grãos. Nas rochas com porosidade abaixo de 1 %, como as ígneas e as metamórficas, a condutividade térmica é pouco influenciada pelos espaços dos poros. Contudo, o grau de saturação dos poros deve ser considerado já que os espaços secos aumentam a resistência ao transporte de calor entre os grãos. Lobo (1981) evidenciou essa influencia da água nos poros da rocha como um fator de aumento da condutividade térmica em relação a amostras secas. Outros estudos apontam um crescimento da condutividade térmica com o grau de saturação e estimam uma correção de até 10 % para rochas com porosidade próxima de 1 %. Sob grandes pressões, as propriedades elásticas dos cristais individuais são alteradas pela deformação dos retículos cristalinos e influenciam a condutividade térmica. Esta aumenta com o aumento da compressão e este aumento, dentro do limite elástico, é linear e dado por (Schloessin e Dvořák, 1972)

$$K = K_0(1+ap)$$
(1.13)

onde a é da ordem de (1 a 5) $\times 10^{-5} MPa^{-1}$ (1 a 5 $Mbar^{-1}$)

Resultados experimentais mostram para a difusividade térmica κ um comportamento similar ao da equação 1.13 na faixa de pressão de 0 a 300 MPa o qual pode ser representado pela equação (Seibold e Gutzeit, 1974, de acordo Bunterbarth, 1984)

$$\kappa = \kappa_0 (1 + \hat{a}) \tag{1.14}$$

onde b toma valores de (1 a 5) $\times 10^{-4} MPa^{-1}$ (10 a 50 $Mbar^{-1}$) para rochas crustais.

1.2.5 Condutividade térmica de corpos anisotrópicos

A condutividade térmica de um material depende não apenas de sua estrutura cristalina mas também de alterações nessa estrutura que venham causar anisotropia na condutividade térmica. A anisotropia por si causa uma dissipação de calor com diferentes taxas em diferentes direções e, nessas condições, a direção do fluxo de calor não obrigatoriamente coincide com a do gradiente de temperatura num ponto. Anisotropia pode surgir não só da organização dos íons em uma estrutura cristalina, mas também, numa escala macroscópica, em rochas exibindo uma orientação preferencial de grãos minerais individuais. Rochas com uma textura distinta, tal como rochas sedimentares e muitas rochas metamórficas, exibem um comportamento anisotrópico definido.

A condutividade térmica para muitas rochas é aproximadamente isotrópica, particularmente para rochas plutônicas e vulcânicas. Nesse caso, o fluxo de calor em corpos homogêneos poderá ser predominantemente vertical e isso é suficiente para considerar só o componente vertical da equação (1.1). Já para muitas rochas sedimentares e metamórficas, a condutividade térmica é anisotrópica e o fluxo lateral de calor poderá ser significante, ainda em corpos homogêneos. Portanto, a informação da anisotropia é geralmente necessária, necessitando de medidas de laboratório em diferentes direções.

Anisotropia existe em várias escalas. Segundo Clauser e Huenges (1995)

 \checkmark Na escala microscopica muitos minerais são anisotrópicos.

 \checkmark Na escala de laboratório, a condutividade térmica de muitas rochas também é anisotrópica. Contudo, até mesmo se as rochas são compostas de minerais anisotrópicos, a orientação aleatória dos cristais no interior da rocha pode fazer a condutividade térmica das rochas se tornar macroscopicamente isotrópica.

 \checkmark Todavia numa grande escala, se as rochas são expostas à dobramentos, orogênese ou outros proçessos tectônicos, a condutividade térmica da formação de rochas resultante poderá ser tanto isotrópica quanto anisotrópica.

Rochas formadas ou deformadas num campo de pressão ostentam uma orientação preferencial de seus grãos minerais e isso é típico em regiões de metamorfismo. Agregados granoblásticos podem mostrar uma orientação de seus retículos cristalinos sem uma elongação na forma de seus grãos. A maior parte da orientação preferencial envolve alinhamento paralelo dos grãos alongados e é facilmente detectado. Em muitas rochas esse alinhamento é bastante forte e pode ser geralmente visto a olho nu, tanto como uma foliação (planar ou estruturas finas) quanto lineação (alinhamento paralelo de minerais prismáticos ou agregados de minerais como linhas). Geralmente, os minerais alinhados estendem-se pelo plano de foliação - quando nossas amostras apresentaram uma estrutura visivelmente clara, elas foram sempre usadas como referencia durante as medidas de propriedades direcionais. Com minerais e rochas tendo uma condutividade térmica direcionalmente preferencial, a condutividade térmica K da Eq. 1 torna-se um tensor que possui três componentes independentes na direção das três coordenadas perpendiculares x, y e z. Os componentes da condutividade podem ser medidos seja num monocristal ou em rochas com estrutura distinta, um perpendicular (K_z) e uma paralela (K_y) ao plano de alinhamento. Neste caso, assumimos $K_y = K_x$. A disposição aleatória de grãos de minerais anisotrópicos para gnaisses altamente deformados etc., resulta em um valor médio que pode ser estimado produzindo, assim, um valor médio escalar para o parâmetro K (Bunterbarth, 1984).

Os vários métodos dão, respectivamente, os valores médio, máximo e mínimo de:

$$K_{max} = \frac{1}{(K_x + K_y + K_z)}$$
(1.15)

$$K_{min} = 3\left(\frac{1}{K_x} + \frac{1}{K_y} + \frac{1}{K_z}\right)^{-1}$$
(1.16)

A média geométrica comumente usada

$$K_g = \sqrt[3]{K_x K_y K_z} \tag{1.17}$$

jaz na região de

$$K_{min} \le k_g \le K_{max} \tag{1.18}$$

Nos minerais anisotrópicos, a anisotropia da estrutura cristalina freqüentemente se expressa no hábito de cristais sozinhos. Eles são alongados ou têm aparência laminada como no quartzo, turmalina mica e outros minerais. Em outra escala, a estratificação e mudanças composicionais em rochas sedimentares resultam em uma anisotropia grande em suas propriedades físicas. Um exemplo é o folhelho no qual a anisotropia é mantida durante o metamorfismo. Rochas de diferentes estruturas exibem diferenças grandes entre condutividade térmica perpendicular e paralela à estratificação.

Segundo Cermak e Rybach (1982), o fator de anisotropia (Fa) é definido pela razão do componente paralelo (\parallel) para o perpendicular (\perp) da condutividade térmica seja á foliação, lineação, xistosidade ou acamamento. Assim,

$$Fa = \frac{K_{\parallel}}{K_{\perp}} \tag{1.19}$$

Hans-Dieter e Ruidiger (2003) mediram a condutividade térmica em vários tipos de rochas ígneas e metamórficas fazendo as medidas com um sensor de agulha em diferentes direções para estudar o efeito da anisotropia nessas rochas. Aqueles autores obtiveram os valores máximos de condutividade térmica em medidas paralelas (i) ao eixo óptico de um mineral ou (ii) ao plano de acamamento, foliação ou xistosidade. Medidas perpendiculares ao eixo óptico de um mineral ou ao acamamento, foliação ou xistosidade apresentaram valores mínimos para a condutividade térmica.

Desse modo, eles puderam distinguir entre (i) a anisotropia mineral dependente da disposição das partículas minerais (lineação) no interior da amostra das rochas e (ii) a anisotropia estrutural ocorrendo paralela e perpendicular aos planos de acamamento, foliação ou xistosidade do volume de rocha. Anisotropia mineral é devida à igual orientação dos minerais no interior da rocha (exemplo, anfibólios alongados ou orientados), enquanto anisotropia estrutural é devida a uma mudança de composição (exemplo, alternância de camadas de quartzo e feldspato ou micas) no interior de uma rocha sedimentar ou metamórfica.

Segundo ainda aqueles autores, fatores de anisotropia menores que 0.9 ou maiores que 1.1 indicam um acamamento, foliação ou lineação com um efeito significante na condutividade térmica. O maior fator de anisotropia, aproximadamente 1.6 (Fig. 1.2b) está associado a um granada-biotita-muscovita-clorita-xisto janela (L_{12}) , enquanto rochas magmáticas, especialmente as efusivas e intrusivas $(L_{22}, L_{23}, L_{24}, L_{26})$, mostram propriedades de condutividade térmica quase isotrópicas. Os mais altos valores de condutividade térmica, aproximadamente 6 W $m^{-1\circ}$ C⁻¹, foi determinado para dolomitos dos locais L_3 e L_{21} e são concordante com dados da literatura (ver também Clauser e Huengens, 1995).

1.2.6 Calor específico

O aumento da energia interna (q^*) de um elemento de volume é proporcional à sua massa (m) e a temperatura. O fator de proporcionalidade é chamado calor específico c(J k g^{-1} °C⁻¹) e é dado por:

$$c = \frac{1}{m} \frac{dq^*}{dT} \tag{1.20}$$

Para rochas que não são porosas, o calor específico médio chega a $0.8 \text{ Jk}g^{-1} \circ \text{C}^{-1}$, um valor que tem uma dependência significante da temperatura. Para rochas cristalinas, esta dependência da temperatura a pressão constante é dada pela equação:

$$c_p[Ws/g^{\circ}K] = 0.751 + 6.14 \times 10^{-4}T 1.928 \times 10^4/T^2$$
(1.21)

onde c é dado em J ${\bf k}g^{-1}$ °C^{-1} e T é a temperatura absoluta.

Rochas sedimentares geralmente têm alta porosidade e quando saturadas com água, o calor específico correspondente aumenta porque o calor específico da água é relativamente alto (c = $4,2\times10^3$ Jkg⁻¹°C⁻¹ a 20°C). Dentro da crosta superior, o calor específico da água pode chegar ao dobro do seu valor (exemplo c = 8×10^3 Jkg⁻¹°C⁻¹ a 350 °C e p = 20 MPa).

Figura 1.2: Valores de medidas de laboratório de condutividade térmica (barra vertical),valores médios (simbolos) e fator de anisotropia (quadrados) de 26 amostras de rochas saturadas com água a condições ambientes (25°C): plano de medida (a) paralelo e normal à lineação; (b) paralelo e normal aos planos de acamamentos foliação e xistosidades das rochas (Hans-Dieter e Rüdiger, 2003)

No caso de rochas porosas saturadas, o calor específico pode ser obtido usando-se uma média ponderada de seus valores da matriz e do fluido preenchendo seus poros. Na tabela 1.1 são dados valores do calor específico para algumas litologias.

CAPÍTULO 2

Métodos e Técnicas de medidas

2.1 Propriedades térmicas das rochas

Neste trabalho, medimos as propriedades térmicas das amostras de rocha com o analisador de propriedades térmicas $Quickline^{TM}$ -30 da Anter Corporation mostrado na Figura 2.1. Esse analisador é dotado de sensores planos circulares e mede a condutividade térmica (K) e a capacidade calorífica volumétrica (C) da amostra, simultaneamente. Para cada medida, o analisador fornece os valores de K e C, como também o da difusividade térmica (κ), este obtido usando a Eq. (1.3). O calor específico (c) é posteriormente calculado pela Eq. (1.2) usando a densidade determinada separadamente.

Em nossas medidas, usamos sensores calibrados que cobrem a faixa de 0,6 a 6,0 W m^{-1} °C⁻¹. Para essa faixa de medida, e em condições normais de medição, o fabricante especifica, para a medida da condutividade térmica, um erro máximo de 10% na acurácia e de até 3% para a reprodutibilidade; para a capacidade térmica volumétrica, é especificado um erro de 15% na leitura e de 3% na reprodutibilidade.

As amostras de rocha para as medidas térmicas tiveram dimensões tais que nos permitiu produzir nelas duas faces planas perpendiculares entre si para que fosse possível realizar medidas em diferentes orientações e, assim, analisar efeitos de anisotropia. Em amostras com algum tipo de foliação, produzimos uma face plana perpendicular ao plano de lineação existente (xistosidade, foliação ou lineação) e outra paralelo a estes para que fosse possível realizar duas medidas das propriedades térmicas, uma perpendicular e outra paralela aos planos de foliação e, assim, podermos analisar o efeito da anisotropia nas rochas. Também nas amostras homogêneas como rochas ígneas intrusivas e efusivas fizemos dois cortes perpendiculares entre si para verificar a existência de anisotropia.

Fatores como flutuações na temperatura, umidade local, perturbações no sensor, dimensões da amostra e superfície de contato entre o sensor e a amostra influenciam na confiabilidade e qualidade das medidas térmicas. Para reduzir a influência de variações de temperatura e umidade, tivemos o cuidado de operar o aparelho numa sala climatizada com temperatura estável e umidade baixa e mantivemos as amostras nesta sala por pelo menos um dia antes de serem medidas para que todas estivessem homogeneamente numa mesma

Figura 2.1: Analisador QuicklineTM-30 da Anter Corporation utilizado na medição das propriedades térmicas de rochas. As medidas são feitas em duas faces planas polidas e perpendiculares ente si.

temperatura.

A espessura e a superfície de contato das amostras são os fatores mais importantes que influenciam na qualidade da medida. Espessuras menores que cerca de 2 cm permitem a perda de calor pela face oposta àquela onde se põe o sensor prejudicando, assim, a medida. Também, é muito importante que a superfície de contato esteja bem polida, porque numa superfície rugosa, o ar entre o sensor e a superfície interfere na qualidade da medida. Para minimizar esses efeitos, utilizamos amostras com um mínimo de 5 cm de espessura e polimos as faces serradas das amostras para garantir um perfeito acoplamento entre o sensor e a superfície da amostra sem necessitar do uso de pastas térmicas.

2.2 Medida de densidade

Determinamos as densidades das amostras de rocha utilizando um picnômetro de água desenvolvido por Oliveira (2006). Este equipamento constitui-se de um tubo cilíndrico de acrílico com tampa nas duas extremidades: a tampa inferior é colada e é a base do cilindro e a tampa superior é uma placa solta de acrílico que adere perfeitamente nas bordas superior do cilindro; essa placa possui um pequeno orifício para permitir a saída do ar quando ela é posta sobre o cilindro (figura 2.2). Os passos para a determinação da densidade de cada amostra de rocha são:

Figura 2.2: Picnômetro de água vendo-se uma amostra no interior do cilindro transparente

a) a amostra é lavada, secada em estufa e depois pesada obtendo-se a massa MAm_{seca} . Em seguida, a amostra é mergulhada num vaso com água.

b) pesa-se o picnômetro completamente cheio d'água, tapado e sem bolhas obtendo-se a massa MPi_{cheio} (esse valor será usado em todas as determinações);

c) introduz-se a amostra saturada no cilindro, adiciona-se água no cilindro para enchê-lo completamente e pesa-se o picnômetro com a amostra e completamente cheio d'água, tapado e sem bolhas obtendo-se a massa $MPi_{água+amostra}$.

Usando-se água destilada (
 a = 1,000 103 kg $m^{-3}),$ o volume da amostra (VA) é dada por

$$VA = MPi_{cheio} - MPi_{\acute{a}gua + amostra} + MAm_{seca}$$
(2.1)

e a densidade da amostra

$$\rho = \frac{MAm_{seca}}{VA} \tag{2.2}$$

A densidade determinada por este método é a densidade efetiva (ou absoluta) já que seus poros estão preenchidos com água.

O erro da medida resulta dos erros das pesagens apenas. Trabalhando-se com balança de precisão 0,005 g, o erro total propagado será 0,0086 g. Ademais, a Eq. (2.1) pode ser escrita como

$$VA = MAC_{cheio} - M_{\text{água adicionada}}, \qquad (2.3)$$

onde MAC_{cheio} é a massa de água no cilindro cheio (corresponde ao volume do cilindro) e $M_{água adicionada}$ é a massa de água que se adiciona para encher o cilindro com a amostra, ou seja, o volume restante do cilindro ao introduzir-se a amostra. Se M é o erro associado a cada medida de massa, pode-se mostrar que o erro relativo na determinação do volume efetivo da amostra VA / δVA é dado por

$$\frac{\delta VA}{VA} = 2 \frac{\delta M}{MAC_{cheio} - M_{\acute{a}quaadicionada}}$$
(2.4)

Quanto menor $M_{\acute{a}gua}$ adicionada menor será o erro relativo de modo que se deve usar amostra com o volume próximo daquele do cilindro para minimizar o erro relativo da medida.

CAPÍTULO 3

Resultados e discussão

Neste trabalho, fizemos medidas de propriedades térmicas e densidade em 102 amostras de rochas de 15 litotipos diferentes incluindo rochas ígneas e metamórficas como também realizamos o estudo microscópico de lâminas petrográficas em 26 amostras incluindo quase todas as litologias envolvidas neste estudo. As amostras foram retiradas de afloramentos numa faixa de cerca de 50 km do embasamento adjacente às bacias litorâneas do nordeste brasileiro como parte dos trabalhos desenvolvidos no projeto Geoterm-Ne. No apêndice A, apresentamos as litologias, unidades geológicas, localização e coordenadas UTM das amostras analisadas.

No apêndice B estão os resultados das medidas de condutividade térmica K (W $m^{-1}\circ C^{-1}$), capacidade calorífica C ($Jm^{-3}\circ C^{-1}$) e densidade $\rho(kgm^{-3})$ realizadas nas amostras como também os valores calculados da difusividade térmica $\kappa(m^2s^{-1})$ e do calor específico c ($Jkg^{-1}\circ C^{-1}$) usando as equações 1.3 e 1.2, respectivamente. O valor K_{\parallel} nesse apêndice refere-se à medida da condutividade térmica feita no plano paralelo à foliação e K_{\perp} no plano perpendicular à foliação.

A análise dos resultados apresentados no apêndice B mostra que a condutividade térmica para os vários litotipos estudados varia numa faixa bastante ampla, entre 0,76 Wm^{-1} °C⁻¹ num filito e 6,72 Wm^{-1} °C⁻¹ num quartzito. Constata-se, ainda, que essa variação é, também, significante para um mesmo tipo de rocha como se pode observar na Tabela 3.1 e na Figura 3.1. Como conseqüência dessa grande variação, verifica-se não ser possível caracterizar um dado litotipo por sua condutividade térmica já que as faixas de variação de muitos litotipos se superpõem. A conclusão semelhante já chegaram autores como (Clauser e Huenges (1995), Labani e Anurup (2007)) entre outros.Vê-se, nos gráficos, que os quartzitos são as rochas com a maior faixa de variação e os gabronoritos com a menor faixa.

No apêndice C, apresentamos a composição mineralógica de 26 amostras, juntamente com a mineralogia respectiva, cobrindo quase todos os tipos de rocha analisados neste trabalho. A Figura 3.3 apresenta um gráfico que relaciona a condutividade térmica com a porcentagem de quartzo da rocha. Podemos observar nesse gráfico que quanto maior a quantidade de quartzo na rocha maior sua condutividade térmica. Isso ocorre porque a condutividade térmica de uma rocha depende fortemente de sua composição mineralógica e o

Litologia	No.	$K_{\parallel min}$	$K_{\parallel med}$	$K_{\parallel max}$	$K_{\perp min}$	$K_{\perp med}$	$K_{\perp max}$
Gabronorito	04	2,19	2,55	2,84	2,05	2,36	2,67
Granito	08	2,15	2,77	3,41	1,39	3,05	3,33
Metacalcário	09	2,71	$3,\!59$	4,90	2,60	3,45	5,24
Xisto	10	1,63	2,26	2,98	0,68	1,51	2,68
Quartizito	07	2,38	4,40	6,72	1,68	4,19	6,47
Metassiltito/Metarritimito	06	1,27	1,93	2,77	0,89	1,43	2,13
Filito	08	1,42	2,44	3,50	0,76	1,91	3,07
Charnoquito	08	2,17	2,83	3,80	2,23	2,80	3,67
Enderbito/Charnoenderbito	07	2,56	2,48	3,62	1,95	2,38	3,60
Biotita gnaisse	06	2,14	2,47	3,07	1,23	1,77	2,89
Ortognaisse	12	2,04	2,52	3,40	1,19	2,09	2,89
Metarenito Xistoso	05	0,91	1,72	2,11	0,83	1,27	1,71
Metarenitos	12	2,24	3,05	3,99	2,28	3,07	4,36

Tabela 3.1: Valores de condutividades térmicas paralelas K_{\parallel} (mínimo, médio e máximo), e perpendiculares K_{\perp} (mínimo, médio e máximo) para os diversos litotipos estudados.

Figura 3.1: Variação dos valores de condutividade térmica (a)paralela (K_{\parallel}) e (b)perpendicular (K_{\perp}) para os diversos litotipos estudados.

quartzo é um mineral que possui alta condutividade térmica (7,67 Wm^{-1} °C⁻¹).

Nos quartzitos, a condutividade térmica variou entre 1,68 $Wm^{-1\circ}C^{-1}$ no $K_{\perp}e$ 6,72 $Wm^{-1\circ}C^{-1}$ no K_{\parallel} . Esses resultados estão em concordância com os de Cermak e Rybach (1982), Jessop (1990), entre outros para o mesmo litotipo. É importante salientar que os arenitos (rochas sedimentares) também têm alta porcentagem de quartzo, porém, podem possuir uma alta porosidade. Isso faz com que a condutividade seja menor, pois quanto maior a porosidade da rocha maior a quantidade de fluidos (ex ar, água.etc) que possuem uma baixa

Figura 3.2: Variação dos valores de difusividade térmica (a)paralela (K_{\parallel}) e (b)perpendicular (K_{\perp}) para os diversos litotipos estudados.

Figura 3.3: Relação da condutividade térmica (K) com a porcentagem de quartzo.

condutividade . Clauser e Huenges (1995) verificaram que quanto maior a porosidade menor a condutividade térmica, especialmente para rochas sedimentares que possuem porosidades altas. Para rochas metamórficas como os quartzitos esse efeito é bem menor, devido a sua baixa porosidade.

Os metacalcários também apresentaram altos valores de condutividade térmica os quais podemos associar à presença, nessas rochas, de calcita ou dolomita que são minerais com alta condutividade térmica.

A figura 3.4, apresenta um grafíco com a variação do calor especifíco para os vários litotipos estudados. O calor específico varia numa faixa bastante ampla, entre 0,46 Jkg^{-1} °C⁻¹ num metarenito xistoso e 0,90 Jkg^{-1} °C⁻¹ num quartzito.

Figura 3.4: Variação do calor específico para os diversos litotipos estudados .

3.1 Efeito da anisotropia na condutividade térmica e na difusividade térmica

Para a caracterização e descrição das propriedades anisotrópicas, a condutividade foi medida em duas direções principais: paralela (K_{\parallel}) e perpendicular (K_{\perp}) ao plano de foliação (acamamento, foliação, lineação e xistosidade). O fator de anisotropia é, então, definido como Fa = K_{\parallel}/K_{\perp} .

Nas figuras 3.5 a 3.16 apresentamos os resultados das condutividades térmicas paralela (K_{\parallel}) e perpendicular (K_{\perp}) , dos fatores de anisotropia, da composição mineralógica e das difusividades térmicas paralela (κ_{\parallel}) e perpendicular (κ_{\perp}) para as diversas litologias estudadas. Os valores de κ_{\parallel} e κ_{\perp} são obtidos pela razão entre os valores correspondentes de K_{\parallel} e K_{\perp} e a capacidade calorífica volumétrica C (equação 1.2) que é um escalar (propriedade de volume). Desse modo, a anisotropia na difusividade térmica segue a mesma tendência daquela da condutividade térmica com o mesmo fator de anisotropia.

Pela analise dos gráficos, podemos observar que os granitos, charnoquitos, enderbitos, charnoenderbitos, gabronoritos, metarenitos, metacalcários, e quartzitos comportam-se como praticamente isotrópicos.

Nos granitos mostrados na Figura 3.5, a amostra de numero 7 é uma granito- moscovitabiotita gnaissificado e tem fator de anisotropia de 1,78. A orientação das micas, que são minerais altamente anisotrópicos, seria a razão para a alta anisotropia observada. A amostra 6 é fracamente anisotrópica, apesar de existir uma orientação preferencial dos grãos minerais no interior dessa rocha (granito lineado). Segundo Wall et alli (1991) a anisotropia menor observada em rochas com lineação está relacionada com o fato de que, nesse tipo de rocha, os grãos de quartzo são fracamente orientados e, apesar de o quartzo ser um mineral altamente anisotrópico, sua presença em rochas com lineação não tem muita influência para a anisotropia. Esse resultado esta em concordância com os obtidos por Hans-Dieter e Rüdiger (2003) para rochas com lineação.

Para os quartzitos da Figura 3.6, as amostras 1 e 3 apresentam anisotropia com fatores de 1,42 e 1,29 respectivamente. A amostra 1 é um quartzito xistoso de modo que podemos associar sua anisotropia a efeitos estruturais como a sua xistosidade. Já a amostra 3 é um quartzito moscovita que contém 37% de mica (moscovita), mineral altamente anisotrópico. A análise mineralógica dessa rocha mostra ser ela constituída de agregado poligonal fino de quartzo, em contatos retos entre si, constituindo perfeito mosaico com palhetas fortemente orientadas de moscovita, levemente esverdeadas, de cerca de 0,2 mm formado feixes, segregados por banda (Raimundo Fróes, comunicação pessoal) de modo que podemos associar a anisotropia observada à orientação e disposição da moscovita no interior da rocha. A forte anisotropia da moscovita fôra observada por Clauser e Huenges (1995) que obtiveram $K_{\parallel} = 3,89 \ Wm^{-1\circ}C^{-1}e \ K_{\perp} = 0,62 \ Wm^{-1\circ}C^{-1}.$

As litologias que apresentaram alta anisotropia foram biotita gnaisse, metarenitos xistosos, filitos, siltitos, meta-ritmitos, xistos e ortognaisses. Todas essas litologias têm como característica comum possuírem alguma forma de foliação (acamamento, foliação, lineação e xistosidade) que é a responsável por seus comportamentos anisotrópicos.

Os biotita gnaisse Figura 3.7 apresentam fatores de anisotropia em torno de 1,8, resultados que estão em concordância com os obtidos por Cermak e Rybach (1982).

Vimos que os metarenitos comportam-se como isotrópicos (figura 3.6); já os metarenitos xistosos (Figura 3.10) apresentam fator de anisotropia variando de 1,2 a 2,0.

Os filitos (Figura 4.9), os siltitos (Figura 4.10) e os metarritmitos (Figura 4.10) são rochas metassedimentares altamente foliadas e, por isso, apresentam fatores de anisotropia alto, sendo que que a amostra 3 de metarritmito apresenta um fator de anisotropia de 2,44 um dos mais altos de todas as litologias estudadas.

Os xistos (figura 3.14) apresentam os maiores fatores de anisotropia tendo a amostra 5 a um valor de 3,2, o maior encontrado neste trabalho. Associamos essa alta anisotropia à forte orientação das micas no interior da rocha.

Figura 3.5: Condutividade térmica (a) e difusividade térmica (b), valores médios paralelos e perpendiculares entre si, e paralelas e perpendiculares aos planos de lineação para as amostras 04,05 e 06 (granitos lineados) e fatores de anisotropia (quadrados no topo), de oito amostras de granitos em condições ambientais e composição mineralógica das amostras de numero 1, 2, 3 e 8.

Figura 3.6: Condutividades térmicas (a) e difusividades termicas (b), pralelas e perpendiculares de sete amostras de quartzitos em condições ambientais e composição mineralógica das amostras de numero 3, 4 e 5.

Figura 3.7: Condutividades térmicas (a) e difusividades termicas (b), pralelas e perpendiculares de seis amostras de biotita gnaisse em condições ambientais e composição mineralógica das amostras de numero 3, 5, e 6.

Figura 3.8: Condutividades térmicas (a) e difusividades termicas (b), pralelas e perpendiculares de oito amostras de charnoquitos em condições ambientais e composição mineralógica das amostras de numero 1,3,4, e 5.

Figura 3.9: Condutividades térmicas (a) e difusividades termicas (b), pralelas e perpendiculares de sete amostras de enderbitos e charnoenderbitos em condições ambientais e composição mineralógica das amostras de numero 1, 5, 6 e 7.

Figura 3.10: Condutividade térmica , valores médios paralelos e perpendiculares aos planos de foliação e fatores de anisotropia (quadrados no topo), de oito amostras de metacalcários, cinco de arenito xistoso e quatro de gabronoritos em condições ambientais

Figura 3.11: Difusividade térmica , valores médios paralelos e perpendiculares aos planos de foliação e fatores de anisotropia (quadrados no topo), de oito amostras de metacalcários, cinco de arenito xistoso e quatro de gabronoritos em condições ambientais

Figura 3.12: Condutividades térmicas (a) e difusividades termicas (b), pralelas e perpendiculares de oito amostras de filitos em condições ambientais

Figura 3.13: Condutividades térmicas (a) e difusividades termicas (b), pralelas e perpendiculares de seis amostras de siltitos e metarritmitos em condições ambientais .

Figura 3.14: Condutividades térmicas (a) e difusividades termicas (b), pralelas e perpendiculares detreze amostras de metarenitos em condições ambientais e composição mineralógica das amostras de numero 11, 12 e 13.

Figura 3.15: Condutividades térmicas (a) e difusividades termicas (b), pralelas e perpendiculares de nove amostras de xistos em condições ambientais e composição mineralógica das amostras de numero 6, 8 e 9.

Figura 3.16: Condutividades térmicas (a) e difusividades termicas (b), pralelas e perpendiculares de onze amostras de ortognaisse e composição mine-ralógica das amostras de numero 3, 4, 5 e 6 .

CAPÍTULO 4

Conclusões

Os resultados obtidos neste trabalho contribuem para o conhecimento das propriedades térmicas de rochas, particularmente do comportamento isotrópico e anisotrópico numa grande variedade de rochas ígneas e metamórficas, dados escassos na literatura.

Os quartzitos apresentaram os valores mais elevados de condutividade térmica com variação entre 1,68 a 6,72 W m^{-1} °C⁻¹ e o valor mais elevado de calor específico 0,90 Jkg^{-1} °C⁻¹. Esses valores estão diretamente relacionados à grande quantidade de quartzo nos quartzitos.

As rochas ígneas intrusivas como granitos e gabronoritos apresentaram comportamento isotrópico, apesar de seus minerais constituintes serem anisotrópicos. Nossos resultados estão em concordançia com dados da literatura.

As rochas metámorficas como metacalcários, enderbitos, charnoquitos, charnoenderbitos, metarenitos e quartzitos que não apresentaram qualquer forma de foliação comportaramse como isotrópicas; já os biotita gnaisses, metarenitos xistosos, filitos, siltitos, meta-ritmitos, xistos e ortognaisses que apresentaram alguma forma de foliação comportaram-se como anisotrópicas.

Os xistos apresentaram os maiores fatores de anisotropia tendo uma amostra chegado a 3,2, o maior encontrado neste trabalho. Consideramos que esse comportamento devese à orientação e disposição das micas em seu interior, já que as micas são minerais com anisotropia alta.

Concluimos que o comportamento anisotrópico nas rochas deve-se, principalmente, a efeitos estruturais como xistosidade, foliação e lineação.

Agradecimentos

- À minha familía pelo apoio e carinho.
- Ao meu orientador pelo Roberto Max de Argollo pelo seu trabalho e pacência comigo.
- À professora Jacira Cristina de Freitas por tudo que ele fez por mim.
- À minha namorada Bruna pelo amor, compreensão e carinho.
- À Alexandre Barreto Costa e Moacyr Moura Marinho pela grande ajuda.
- À Raimundo Fróes pelo estudo petrográfico das amostras.

Aos meus colegas de faculdade e amigos pelo apoio.

APÊNDICE A

Litologia, localização, e coordenadas das amostras da área de estudo

M SAD 69	Υ	8762142,528	8747776,558	8748278,557	8751212,551	8738191, 579	8739102,577	8739528, 576	8742599,568	8772094,507	8764902,532	8737126,581	8737126,581	8749084	8871140,308	8866325, 318	8867223, 315	8845230, 363	8863020,326	8732220,598	8732202,598	8731897, 593	8741628, 572
Datum UT	X	619266,044	618819,047	618149,049	620286,044	620617,045	619362,048	617611,051	613564,059	6627281,026	678710,917	621519,043	621519,043	635299	721030, 799	720630,801	714305, 815	709709,831	722277,798	659797,964	659925,964	630170,026	626304,033
Localização		SE-222 Tobias Barreto	NW de Tomar do Geru	NW de Tomar do Geru	NW de Tomar do Geru	SW Tomar do Geru	SE-222, SW Tomar do Geru	SE-222, SW Tomar do Geru	SW Tomar do Geru	SE-222, SW Riachão do Dantas	SE-222, NE de Estância	SW Tomar do Geru	SE-222, Umbaúba/Itabaianinha	SE-222, Umbaúba/Itabaianinha	SE-222, S de Canhoba	Ravina na margem N da SE-160	NW de Aquidabã	SW Aquidabã	ENE Aquidabã	NW de Indiaroba	NW de Indiaroba	W de Cristinápolis	Cidade de Tomar do Geru
Litologia		Metarenito	Metarenito	Metarenito	Metarenito	Metarenito	Metarenito	Metarenito	Metarenito	Metarenito	Metarenito	Metarenito	Metarenito	Metarenito arcosiano rosa	Metarenito xistoso	Metarenito xistoso	Metarenito xistoso	Metarenito xistoso	Metarenito xistoso	Ortognaisse granítico	Ortognaisse granodiorítico	Ortognaisse granodiorítico	Ortognaisse granodiorítico bc
Unidade		MNp	MNp	MNp	MNp	MNp	MNp	MNp	MNp	MNp	INM	MNp	APgl	Apg1	MNm2	MNm1	MNm1	MNm1	MNm1	APg2	APg2	APg1	APg3
Amostra		GeSe 017	GeSe 040	GeSe 041	GeSe 046	GeSe 069	GeSe 070	GeSe 071	GeSe 73	GeSe 109-B	GeSe 150	GeSe 067-A	GeSe 067-B	GeBa 072	GeSe 487	GeSe 489	GeSe 494	GeSe 503	GeSe 506	GeSe 002	GeSe 003	GeSe 022	GeSe 032-A

M SAD 69	Υ	8735328,586	8735400,585	8735644,585	8737315,582	9209357,967	9209357,967	9207968, 970	9208702,967	9236015, 872	9238517,863	9230960,888	9236506, 872	8867223,315	9222564, 922	8694294,584	8691704,589	8744408,568	8743411,570	8739466,579	8764800, 525	8764800, 525	8731225,595
Datum UT]	X	629700,026	626099,034	626978, 032	626838,032	224291, 240	$224291,\!240$	227616, 229	229167, 224	247088, 173	249173,167	241850, 191	241850, 191	714305,815	229416, 227	649076, 785	648769, 786	635239,013	635093,014	639725,005	639253,001	639253,001	630139,026
Localização		NW Cristinápolis	NW de Cristinápolis	NW de Cristinápolis	NW de Cristinápolis	Da Faz. Riacho Verde para Gurinhem	De Sapé para Guarabira	De Sapé para Guarabira	De Sapé para Mamanguape	Mulungunzinho a Bonito	NW de Aquidabã	De Sapé para Mulungu	Linha Verde	Linha Verde-Pedreira de Zoraide	NE de Tomar do Geru	NW de Tomar do Geru	E Tomar do Geru	NE Itabaianinha	NE Itabaianinha	W de Cristinápolis			
Litologia		Ortognaisse granodioritico	Ortognaisse granodioritico	Ortognaisse granodioritico	Ortognaisse granodioritico	Ortognaisse granodiorítico	Ortognaisse tonalítico	Ortognaisse tonalítico	Ortognaisse granítico a granodioritico	Biotita gnaisse (bandado)	Muscovita biotita gnaisse	Biotita gnaisse	Biotita gnaisse	Metarenito xistoso	Biotita gnaisse	Enderbito	Granulito charnoenderbito	Charnoenderbito	Charnoenderbito	Enderbito	Charnoenderbito	Enderbito	Charnoquito
Unidade		APg1	APg1	APg1	APg1	APy	PMy	APy	APy	Pst	Mct	Pst	Pst	MNm1	Mct	APg2	APg2	APgl	APgl	APgl	APgl	APgl	Apgl
Amostra		GeSe 056	GeSe 062	GeSe 063	GeSe 064-A	GePb 169	GePb 170	GePb 171	GePb 172	GePb 199	GePb 200	GePb 221	GePb 268	GeBa 096-A	GePb 157	GeBa 001-B	GeBa 153	GeSe 081	GeSe 082	GeSe 087	GeSe 127-A	GeSe 132	GeSe 050

-

Γ	logia La	Litologia
NE	oquito NE	Charnoquito NE
NΝ	oquito NV	Charnoquito NV
Ι	oquito	Charnoquito
NE	oquito NE	Charnoquito NE
NE	oquito NE	Charnoquito NE
NE	oquito NE	Charnoquito NE
-179	ito (SE-179	Filito (SE-179
-179	seixoso (SE-179	Filito seixoso (SE-179
SS	/Xisto SS	Filito/Xisto SS
SE	/Xisto SE	Filito/Xisto SE
de 9	ito NE de S	Filito NE de S
Feir	ito Trecho Feir	Filito Trecho Feir
NM	alcífero NW	Filito calcífero NW
	ito	Filito
4	tito I	Siltito N
4	ssiltito N	Metassiltito N
Grae	ritmito Estrada Grae	Metarritmito Estrada Grae
щ	ritmito E	Metarritmito
Ń	folhelho NV	Siltito+folhelho NV
Ν	mito N	Ritmito N
de S	o xistoso SE de S	Quartzito xistoso SE de S
le S	rtzito S de S	Quartzito S de S

Г

Т

n UTM SAD 69	Υ	819 8886146,271	802 8880193,286	911 8772295,517	947 8783679,489	903 8808833,437	989 8759558,537	003 8818098,408	996 8825784,392	930 8801572,451	901 8851509,342	809 8886273,271	805 8888262,267	881 8874413,291	130 9241135,851	838 8887490,266	012 8779971,491	980 8784591,484	981 8784460,484	991 8830908,381	007 8816060,412	988 8831556,379	030 8761722,530
Datui	Х	710512,	718467,	680872,	663099,	681000,	645416,	634255,	637263,	669165,	677763,	714778,	716426,	684192,	260871,	702069,	633301,	647550,	647118,	638882,	632957,	640155,	625891,
Localização		WNW de N. S. de Lourdes	SE de N. S. de Lourdes	NE de Estância	NW de Salgado	SE de Itabaiana	XXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXX	S Tanque na SE-170	NE de N.S. de Lourdes	Estrada N. S. de Lourdes - Escurial	NE de Glória	De Sapé para Mamanguape	NW de Itabi	NW de Riachão do Dantas	SSE de Lagarto	SSE de Lagarto	NE de Simão Dias	NE de Simão Dias	Cidade de Pinhão	NW de Itabaianinha
Litologia		Quartzito	Quartzito	Quartzito	Quartzito	Quartzito	Xisto	Xisto	Xisto	Xisto	Xisto	Xisto	Xisto (Gnaissificado)	Xisto	Biotia xisto	Xisto gnaissoso	Calcário	Calcário dolomítico	Calcário dolomítico	Metacalcário	Metadolomito	Metacalcário	Metacalcário calcitico
Unidade		Qt	Qt	(\dot{c}) INM	(\dot{i}) INM	MNi	APgl	MNfp1	MNfp1	MNr1	MNm1	MNm1	LGr	MNm1	Mct	INM	MNa	MNa	MNa	MNoa	MNoa	MNfp1	APg5
Amostra	_	GeSe 378	GeSe 392	GeSe 153	GeSe 163	GeSe 255	GeSe 603	GeSe 604	GeSe 605	GeSe 606	GeSe 366	GeSe 380-B	GeSe 382-A	GeSe 409	GePb 222 -B	GeSe 461	GeSe 112-B	GeSe 171	GeSe 173	GeSe 216	GeSe 204	GeSe 217-A	GeSe 551

ſ

I SAD 69	γ	761121,531	841047,368	702012,561	684506, 602	704792,553	734101,589	733454, 590	767012,519	246600, 834	862170,322	784401,484	776442,500	776260, 502	777853,497
Datum UTN	X	624787,033 8	688356,880 8	598429,884 8	640546,804 8	580027,921 8	628224,030 8	627782,031 8	633110,014 8	256454, 146 9	695570,859 8	647103,981 8	641569,995 8	646183,985 8	639442,999 8
Localização	1	NW de Itabaianinha	NNW N.S. das Dores	Pedreira da Faz. Sabiá de João de Indó	Conde - Rio da Pedra	Itamira - BR-101	NW Cristinápolis	NW Cristinápolis	N de Itabaianinha	Mamanguape a Guarabira	S de Graccho Cardoso	SSE de Lagarto	NE de Riachão do Dantas	E de Riachão do Dantas	N de Riachão do Dantas
Litologia		Metacalcário calcitico	Metacalcário calcítico	Hb granito (cinza claro)	Granito	Ortognaisse granítico	Granito lineado	Granito lineado	Granito lineado	Biotita muscovita granito gnaissificado	Granito a duas micas	Gabronorito	Gabronorito	Gabronorito	Dique básico
Unidade		APg5	MNfp3	PPytp	APg2	Agm	APg1	APg1	APg4	Mct	MNm1	APgl	LGr	APgl	APg1
Amostra		GeSe 552	GeSe 574	GeBa 018-B	GeBa 114-A	GeBa 123-B	GeSe 058	GeSe 059	GeSe 120	GePb 228	GeSe 451	GeSe 172	GeSe 176	GeSe 182	GeSe 133

APÊNDICE B

Litologia, condutividade térmica (paralela e perpendicular), difusividade térmica (paralela e perpendicular) e calor específico das amostras da área de estudo

Amostra	σ	Cond	utividade	Га	Difi	ısividade	Fa	C	C
	$(x10^{-3}Kgm^{-3})$	(Wm)	$v^{-1\circ C^{-1}}$		$(x10^{6},$	$Jm^{-3\circ}C^{-1}$		$({ m J} m^{-3} {}^{\circ}{ m C}^{-1})$	$(10^3 J k g^{-1\circ} { m C}^{-1})$
		K_{\parallel}	K_{\perp}		$arkappa_{\parallel}$	κ_{\perp}			
GeSe 017	2,614	3,14	3,04	1,03	1,49	1,44	1,03	2,11	0,81
GeSe 040	2,659	2,65	2,42	1,09	1,56	1,53	1,09	2,28	0,86
GeSe 041	2,69	2,72	2,69	1,01	1,29	1,18	1,01	2,04	0,76
GeSe 046	2,685	3,34	3,24	1,03	1,27	1,25	1,03	2,15	0,84
GeSe 069	2,690	2,99	2,92	1,02	1,56	1,51	1,02	2,14	0,80
GeSe 071	2,688	2,87	2,85	1,00	1,33	1,33	1,00	2,16	0,81
GeSe 073	2,653	3,12	$3,\!22$	0.97	1,46	1,51	0,97	2,14	0,80
GeSe 109-B	2,671	3,98	4,36	0,91	1,90	2,08	0,91	2,10	0,79
GeSe 150	2,670	2,24	2,28	0,98	1,19	1,21	0,98	1,89	0,72
GeSe 067-A	2,612	3,34	3,35	1,00	1,53	1,55	1,00	2,19	0,81
GeSe 067-B	2,700	2,79	2,97	0,94	1,52	1,56	0,94	1,87	0,70
GeBa 072	2,675	3,08	3,51	0,88	1,49	1,59	0,88	2,09	0,82
GeSe 478	2,541	2,11	1,03	2,06	1,38	0,67	2,06	1,50	0,46
GeSe 489	3,309	1,86	$1,\!48$	1,26	1,08	0,86	1,26	1,26	0,65
GeSe 494	2,638	2,00	1,71	1,17	1,07	0,92	1,17	1,86	0,69
GeSe 503	2,697	1,71	1,28	1,33	0,97	0,73	1,33	1,76	0,66
GeSe 506	2,689	0,91	0,83	1,10	0,62	0,56	1,10	1,47	0,56
GeSe 002	2,612	3,40	2,89	1,17	1,64	1,40	1,17	2,07	0,56
GeSe 003	2,658	2,58	2,67	0.97	1,24	1,28	0,97	2,08	0,79
GeSe 022	2,654	2,30	2,21	1,04	1,18	1, 13	1,04	1,95	0,78
GeSe 032-A	2,644	2,56	2,44	1,05	1,27	1,21	1,05	2,01	0,73

Amostra	d	Condu	tividade	Fa	Difu	lsividade	Fa	C	C
	$(x10^{-3}Kgm^{-3})$	(Mm^{-})	$^{-10}C^{-1}$		$(x10^{6})$	$m^{-3\circ}\mathrm{C}^{-1}$		$(\mathrm{J}\ m^{-3}\ ^{\circ}\mathrm{C}^{-1})$	$(10^3 J k g^{-1\circ} { m C}^{-1})$
		K_{\parallel}	K_{\perp}		\varkappa	κ_{\perp}			
GeSe 056	2,651	2,73	2,63	1,04	1,32	1,27	1,04	2,07	0,76
GeSe 062	2,66	2,41	2,45	0,99	1,14	1,15	0,99	2,12	0,78
GeSe 063	2,66	2,23	1,92	1,16	1,13	0,97	1,16	1,97	0,80
GeSe 064-A	2,676	2,68	2,56	1,05	1,40	1,34	1,05	1,91	0,74
GePb 169	2,731	2,50	1,36	1,83	1,45	0,79	1,83	1,73	0,71
GePb 170	2,676	2,28	1,35	1,69	1,30	0,77	1,69	1,75	0,63
GePb 171	2,737	2,035	1,185	1,72	1,28	0,74	1,72	1,60	0,66
GePb 172	2,587	2,59	1,40	1,85	XXX	XXX	XXX	XXX	XXX
GePb 199	XXX	$2,\!22$	1,23	1,80	XXX	XXX	XXX		XXX
GePb 200	2,639	2,31	1,31	1,76	1,23	0,70	1,76	1,87	0,71
GePb 221	2,656	2,69	1,62	1,67	1,31	0,79	1,67	2,05	0,77
GePb 268	2,776	3,07	2,86	1,08	1,64	1,52	1,08	1,88	0,68
GeBa 069-A	2,588	2,39	2,39	1,00	1,14	1, 14	1,00	2,09	0,81
GePb 157	2,643	2,14	1,23	1,74	1,15	0,66	1,74	1,85	0,70
$GeBa \ 153$	2,523	3,62	3,60	1,01	1,75	1,74	1,01	2,07	0,82
GeSe 081	2,702	2,56	1,95	1,32	1,35	1,03	1,32	1,89	0,70
GeSe 082	2,717	2,96	3,02	0,98	1,47	1,50	0,98	2,01	0,74
GeSe 087	2,713	2,86	2,83	1,01	1,33	1,31	1,01	2,15	0,79
GeSe 127-A	2,745	2,41	2,43	0,99	1,16	1,17	0,99	2,07	0,76
GeSe 132	2,760	2,94	2,82	1,04	1,42	1,36	1,04	2,07	0,75
GeSe 050	2,650	2,47	2,52	0,98	1,17	1,20	0,98	2,11	0,80

Amostra	θ	Condi	utividade	Fa	Difi	ısividade	Fa	C	c
	$({ m x}10^{-3}Kgm^{-3})$	(Wm)	$(-1 \circ C^{-1})$		$(x10^{6},$	$Jm^{-3\circ}\mathrm{C}^{-1}$		$({ m J} m^{-3} {}^{\circ}{ m C}^{-1})$	$(10^3 J k g^{-1} \circ \mathrm{C}^{-1})$
		K_{\parallel}	K_{\perp}		$\varkappa \parallel$	κ_{\perp}			
GeSe 098	2,707	2,73	2,92	1,08	1,46	1,35	1,08	1,87	0,69
GeSe 144	2,826	2,17	2,23	0,97	1,17	1,20	0,97	1,86	0,66
GeBa 009	2,692	2,94	2,85	1,03	1,52	$1,\!48$	1,03	1,93	0,72
GeSe 091-B	2,711	2,77	2,69	1,03	1,41	1,38	1,03	1,96	0,72
GeSe 097	2,642	3,80	3,69	1,03	1,64	1,60	1,03	2,31	0,87
GeSe 100	2,960	2,96	2,96	1,00	1,39	1,39	1,00	2,13	0,79
GeSe 207	2,522	1,42	0,76	1,87	0,99	0,53	1,87	1,43	0,57
GeSe 212	2,624	2,92	2,23	1,31	$1,\!43$	1,09	1,31	2,05	0,78
GeSe 318	2,672	2,36	2,47	0,96	1,31	1,36	0,96	1,81	0,68
GeSe 329	2,663	2,29	1,97	1,16	1,19	1,02	1,16	1,93	0,72
GeSe 354-A	2,74	2,43	1,68	1,44	1,29	0,89	1,44	1,88	0,68
GePb 358	2,705	2,77	2,08	1,33	1,49	1,09	1,33	1,91	0,71
GePb 546	2,658	3,49	3,07	1,01	1,60	1,59	1,01	2,18	0,82
GePb 584	2,852	1,87	1,04	1,79	1,07	0,60	1,79	1,75	0,61
GePb 186	2,682	2,19	1,92	1,14	1,09	1,04	1,14	1,93	0,72
GePb 191	2,58	1,71	1,15	1,56	1,01	0,74	1,56	1,67	0,65
GePb 441	2,739	2,16	0,89	2,44	1,09	0,56	2,44	1,78	0,65
GePb 507	2,679	1,42	0,99	1,43	0,94	0,72	1,43	1,44	0,54
GePb 526	2,712	1,27	1,05	1,21	0,89	0,74	1,21	1,43	0,53
GeBa 601	XXX	2,77	1,86	1,49	1,35	1,00	1,49	1,96	XXX
GePb 108-A	2,669	I	2,13	I	I	1,12	I	I	0,71
GeBa 344-A	2,576	2,38	1,68	1,42	1,19	0,96	1,42	1,88	0,73
GeBa 345-A	2,608	4,19	4,04	1,04	1,93	2,01	1,04	2,09	0,80

Amostra	d	Cond	utividade	Fa	Dift	ısividade	Fa	C	c
	$(\mathrm{x}10^{-3}Kgm^{-3})$	(Wm)	$(-1 \circ C^{-1})$		$(x10^{6},$	$Jm^{-3\circ}\mathrm{C}^{-1}$		$(\mathrm{J}\;m^{-3}\;\circ\mathrm{C}^{-1})$	$(10^3 J k g^{-1\circ} { m C}^{-1})$
		K_{\parallel}	K_{\perp}		κ_{\parallel}	κ_{\perp}			
GeSe 378	2,684	2,84	2,20	1,29	1,42	1, 14	1,29	1,96	0,73
GeSe 392	2,731	3,19	3,12	1,02	1,44	1,45	1,02	2,19	0,80
GeSe 153	2,626	5,68	6,28	0,90	2,96	2,73	0,90	2,11	0,80
GeSe 163	2,555	5,80	5,56	1,04	2,71	2,55	1,04	2,16	0,85
GeSe 255	2,602	6,72	6,47	1,04	2,84	2,80	1,04	2,34	0,90
GeSe 603	XXX	2,09	1,28	1,62	1,18	0,77	1,62	1,72	XXX
GeSe 604	XXX	2,57	2,15	1,20	1,40	1, 19	1,20	1,82	XXX
GeSe 605	XXX	2,37	1,25	1,90	1,20	0,76	1,58	1,90	XXX
GeSe 606	XXX	2,98	2,68	1,11	1,55	1,36	1,11	1,95	XXX
GeSe 366	2,667	2,12	0,68	3,10	1,21	1	I	I	0,66
GeSe 380-B	2,826	2,36	1,37	1,73	1, 14	0,80	1,73	1,89	0,69
GeSe 382	2,863	2,18	1, 19	1,15	1,07	0,92	1,15	2,05	0,72
GeSe409	2,709	1,63	1,06	1,54	0,99	0,75	1,54	1,52	0,56
GePb 222	2,658	1,78	1, 11	1,60	ı	I	-	I	I
GeSe 461	2,908	2,53	2,37	1,07	1, 13	1,09	1,07	2,20	0,76
GeSe 112-B	2,721	3,76	3,44	1,09	1,71	1,65	1,09	2,14	0,77
GeSe 171	2,818	4,74	4,65	1,02	2,13	2,16	1,02	2,19	0,78
GeSe 173	2,839	4,00	3,89	1,03	2,02	1,82	1,03	2,06	0,73
GeSe 216	2,784	2,84	2,82	1,01	1,32	1,35	1,01	2,12	0,76
GeSe 204	2,772	4,90	5,24	0,94	2,43	2,31	0,94	2,14	0,78
GeSe 217-A	2,663	2,71	2,66	1,02	1,33	1,34	1,02	2,01	0,76
GeSe 551	2,721	I	2,60	I	I	1,24	I	I	I

Amostra	θ	Cond	utividade	Fa	Difi	ısividade	Fa	U	c
	$(\mathrm{x}10^{-3}Kgm^{-3})$	(Wn)	$n^{-1\circ C^{-1}}$		$(x10^{6},$	$Jm^{-3\circ}\mathrm{C}^{-1}$		$({ m J} m^{-3}\circ{ m C}^{-1})$	$(10^3 J k g^{-1} \circ \mathrm{C}^{-1})$
		K_{\parallel}	K_{\perp}		\varkappa	κ_{\perp}			
GeSe 552	2,657	2,77	2,69	1,03	1,30	1,32	1,30	2,08	0,78
GeSe 574	2,750	2,99	3,09	0,96	1,45	1,44	0,96	2,11	0,77
GeBa 018-B	2,680	2,68	2,52	1,06	1,23	1,15	1,06	2,19	0,83
GeBa 114	2,669	2,80	3,17	0,88	1,64	1,54	0,88	1,89	0,72
GeBa 123-B	2,602	2,15	2,20	0,98	1,05	1,11	0,98	2,01	0,77
GeSe 058	2,615	3,25	3,30	0,98	1,40	1,45	0,98	2,29	0,88
GeSe 059	2,639	3,41	3, 33	1,03	1,54	1,52	1,03	2,21	0,84
GeSe 120	2,638	2,81	2,53	1,11	$1,\!43$	1,31	1,11	1,95	0,74
GePb 228	2,62	2,47	1,39	1,78	1,24	1,15	1,78	1,60	0,61
GeSe 451	2,68	2,62	2,92	0,90	1,37	$1,\!42$	0,90	1,98	0,74
GeSe 172	2,94	2,84	2,67	1,06	1,27	1,23	1,06	2,21	0,75
GeSe 176	2,696	2,67	2,34	1,14	1,28	1,16	1,14	2,05	0,76
GeSe 182	2,964	2,19	2,05	1,07	1,09	1,07	1,07	1,97	0,66
GeSe 133	2,793	2,49	2,37	1,05	1,30	1,23	1,05	1,93	0,69

APÊNDICE C

Composição mineralogica de algumas amostras

Composição mineralogica	Grãos de silte e areia 88% (Feldspatos 50%; Quartzo 20%; Filitos + Chert 18%; Matriz 12% (Argilo minerais + Clorita 7%; Óxidos de ferro (Hematita) 5%	Grãos de silte e areia 90% (Feldspatos 52%; Quartzo 20%; Fragmentos líticos 18% ; Cimento 10% (Calcita 7%; Óxidos de ferro (Hematita) 2%; Quartzo 1%)	Grãos detríticos 94% (Feldspatos 64%; Quartzo 28%; Chert ferruginoso 2%); Cimento/Matriz 6% (Quartzo 3%; Opacos 2%; Moscovita 1%; Turmalina (Tr))	Plagioclásio 54%; Quartzo 28%; Microclina 12%; Biotita 6%; Apatita (Tr); Zircão (Tr)	Plagioclásio 61%; Quartzo 27%; Biotita 7%; Microclina 5%; Opacos (Tr); Apatita (Tr); Zircão (Tr)	Plagioclásio 60%;Quartzo 22%; Microclina 12%; Biotita 5%; Opacos + Titanita 1	Plagioclásio 62%; Quartzo 22%; Microclina 12%; Biotita 5%; Opacos (Tr); Apatita (Tr); Zircão (Tr)	Plagioclásio 53%; Quartzo 27%; Microclina 17%; Biotita 3%; Opacos (pirita) (Tr); Apatita (Tr); Zircão (Tr)	Plagioclásio 55%; quartzo 21%; microclina 17%; biotita 6%; opacos 1%; lanita (Tr); apatita (Tr); zircão (Tr)	Plagioclásio 61%; Quartzo 28%; Microclina pertítica 5%; Biotita 5%; Opacos 1%; Apatita (Tr); Zircão (Tr)	Microclina 53%; plagioclásio 23%; quartz o $19\%;$ biotita 5%; opacos (Tr); apatita (Tr)
Litologia	Metarenito	Metarenito	metarenito arcosiano rosa	Ortognaisse granodiorítico	Ortognaisse granodiorítico bc	Ortognaisse granodioritico	Ortognaisse granodiorítico	Ortognaisse granodiorítico	biotita ortognaisse	biotita tonalito gnaisse	Biotita gnaisse
Amostra	GeSe 067-A	GeSe 067-B	GeBa 072	GeSe 022	GeSe 032-A	GeSe 056	GeSe 062	GeSe 064-A	GePb 221	GeBa 096-A	GePb 157

Composição mineralogica	Plagioclásio 43%; Quartzo 25%; Mesopertita 22%; Hiperstênio + Diopsídio + Hornblenda 7%; Biotita 3%; Opacos (Tr); Alanita (Tr); Zircão (Tr)	Microclina (fenoclastos e matriz) 47%; Quartzo 30%; Plagioclásio (fenoclastos e matriz) 18%; Hornblenda 3%; Opacos 2%; Apatita (Tr)	Plagioclásio cálcico + Albita 57%; Quartzo 30%; Hiperstênio 7%; Opacos 3%; Biotita 2%; Hornblenda 1%; Apatita (Tr); Zircão (Tr)	Plagioclásio 49%; Quartzo 18%; Mesopertita + Microclina 15%; Hiperstênio 7%; Hornblenda 5%; Diopsídio 3%; Opacos 2%; Biotita 1%; Apatita (Tr)	Plagioclásio 64%; Quartzo 21%; Hiperstênio 7%; Biotita 3%; Hornblenda 2%; Opacos 2%; Diopsídio 1%; Apatita (Tr)	Quartzo 61%; moscovita 37%; opacos 2%; zircão (Tr)	Grãos detríticos (areia) 65%; (quartzo 45%; feldspatos 20%; zircão (Tr)) Matriz recristalizada 35% (moscovita 34%; opacos 1%)	Grãos detríticos (areia muito fina a grossa) 70% (quartzo 57%; chert 10%; opacos 2%; turmalina 1%); matriz 30% (quartzo 25%; óxidos de ferro 5%)	Moscovita 41%; plagioclásio 18%; estaurolita 12%; biotita 10%; epídoto 5%; actinolita 3%; opacos 3%; turmalina 1%; apatita (Tr); quartzo (vênulas) 7%.	Plagioclásio 57%; quartzo 25%; biotita 17%; opacos 1%;	Bandas xistosas 70% (quartzo + plagioclásio 47%; biotita 40%; granada 12%; calciossilicática 30% (tremolita/actinolita 35%; quartzo + plagioclásio 32%;
Litologia	nderbito	Granulito charnoenderbito	Enderbito	Charnoenderbito	Enderbito	Quartzito	Quartzito	Quartzito	Xisto (Gnaissificado)	biotia xisto	Xisto gnaissoso
Amostra	GeBa 001-B	GeBa 153	GeSe 087	GeSe 127-A	GeSe 132	GeSe 378	GeSe 392	GeSe 153	GeSe 382	GePb 222	GeSe 461

Composição mineralogica	Plagioclásio 70%; Quartzo 18%; Biotita 7%; Microclina 5%;	Opacos (Tr); Apatita (Tr); Zircão(Tr).	Plagioclásio 58%; Quartzo 20%; Microclina 10%; Biotita 7%;	Opacos 3% ; Epidoto + Titanita 2% ; Apatita (Tr); Zircão (Tr).	Plagioclásio 43%; Quartzo 27%; Microclina 20%; Biotita 5%;	Opacos 3%; Hornblenda 2%; Apatita (Tr); Zircão (Tr).	Plagioclásio 40%; quartzo 30%; microclina 18%; moscovita 5%; epídoto 3%;	calcita 2%; titanita + opacos 2%; biotita 1%; apatita (Tr); zircão (Tr).
Litologia	hb granito (cinza claro)		granito		ortognaisse granítico		Granito a duas micas	
Amostra	GeBa 018-B		GeBa 114		GeBa 123-B		GeSe 451	

Referências Bibliográficas

- Birch, F. e Clark, H. (1940) The thermal conductivity of rocks and its dependence upon temperature and composition, Am. J. Sci., **238**:529–558.
- Blackwell, D. D. e Steele, J. L. (1989) Thermal conductivity of sedimentary rocks, Springer-Verlag, New York.
- Buntebarth, G. (1984) Geothermics, An Introduction, Springer-Verlag, Berlin.
- Cermak, V. e Rybach, L. (1982) Thermal onductivity and specific heat os minerals and rocks, Physical Properties of Rocks, 1:305–343.
- Clauser, C. e Huenges, E. (1995) Thermal conductivity of rocks and minerals, Americam Geophysical Union, 3:105–126.
- Hans-Dieter, V. e Rüdiger, S. (2003) Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rocks, Physics and Chemistry of the earth, 28:499–509.
- Jessop, A. (1990) Thermal geophysics, developments, Solid Earth Geophysics, 17:269a.
- Labani, R. e Anurup, B. (2007) Thermal conductivity of higher himalayan crystallines from garhwal himalaya, india, Tectonophysics, **434**:71–79.
- Ratcliffe.; ; gfd, f. e jpf, f. (1959) A new method for the mesurement of thermal conductivity of rocks, Appleid Geophysics, 5:22–31.
- Schatz, J. e Simmons, G. (1972) Thermal conductivity of earth materials at high temperatures, Journal of Geophisical Reseach, **77**:6966–6983.
- Schloessin, H. e Dvořák, Z. (1972) Anisotropic lattice thermal conductivity in enstatite as a function of pressure and temperature, Journal of Geophysical Reseach, **27**:499–516.
- Seipold, U. e Huenges, E. (1998) Thermal properties of gneisses and amphibolites- high pressure and high temperature investigations of ktb-rocks samples, Tectonophysics, 291:173– 178.