

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE GEOCIÊNCIAS CURSO DE GRADUAÇÃO EM GEOFÍSICA

GEO213 – TRABALHO DE GRADUAÇÃO

CARACTERIZAÇÃO HIDROGEOFÍSICA DE UM POÇO TUBULAR PROFUNDO NO MUNICÍPIO DE CÍCERO DANTAS NA SUB-BACIA DO TUCANO CENTRAL

DALILA CARVALHO REIS

SALVADOR – BAHIA

Caracterização Hidrogeofísica do Poço Tubular Profundo no Munícipio de Cícero Dantas na Sub-Bacia do Tucano Central

por

Dalila Carvalho Reis

Orientador: Prof. MC. Geraldo Girão Nery

$\rm GEO213$ – TRABALHO DE GRADUAÇÃO

Departamento de Geofísica

DO

Instituto de Geociências

DA

Universidade Federal da Bahia

Comissão Examinadora

____ MC. Geraldo girão Nery

_____ Dra. Susana Silva Cavalcanti

MC. Marco Antônio Lima Peixinho

Data da aprovação:

Este trabalho é dedicado aos meus pais, que tornaram possível a conclusão de mais uma etapa da minha vida.

Resumo

Este trabalho demonstra a aplicabilidade da perfilagem geofísica de poços na caracterização de aquíferos areno-argilosos na sub-Bacia de Tucano Central, no nordeste do Estado da Bahia. Foram utilizados os perfis cáliper, sônico, indução e raios gama no poço tubular profundo São João da Fortaleza na formação São Sebastião na Bacia do Tucano cujos dados foram disponibilizados pela CERB (Companhia de Engenharia Ambiental e Recursos Hídricos da Bahia). No intuito de se obter uma interpretação quantitativa de alguns parâmetros petrofísicos e hidrogeológicos para a caracterização de aquíferos, a partir das curvas dos perfis geofísicos, foram realizadas inicialmente correlações com os perfis litológicos, descritos em função das amostras de calha. Por fim, por meio dos perfis geofísicos pôde-se qualificar o aquífero quanto a sua produção de água subterrânea, dados seus teores de argila, valores de porosidade, permeabilidade intrínseca e condutividade hidráulica estimados com o uso de equações disponibilizadas na bibliografia.

Abstract

In this work, we show the applicability of geophysical well logging in shaly sandstone aquifers characterization in Central Tucano sub-basin, at the northeastern portion of the state of Bahia. Caliper, Sonic, Induction and Gamma-Ray logs were used for the São João da Fortaleza well in São Sebastião formation with data made available by CERB (Environmental Engineering and Water Resources Company of Bahia). In order to obtain a quantitative interpretation of some petrophysical and hydrological parameters for the aquifer characterization based on the records of the geophysical logs, correlations with the lithology, described from drill cuttings, were initially realized. Finally, it was possible to qualify the aquifer by its groundwater production, given its salt and clay contents; and porosity and permeability estimated using equations developed in previous works.

Sumário

R	esum	0		3					
\mathbf{A}	bstra	nct		4					
In	esumo3bstract4trodução10Caracterização da Área do Estudo111.11.2Geologia1.3Sequências sedimentares1.4Litoestratigrafia1.5Projeto de Abastecimento Águas do Sertão141.5Proprie da Abastecimento Águas do Sertão172.2Proprie da Perfilagem Geofísica de Poços172.1Conceitos Gerais172.2Propriedades Hidrogeofísicas das Rochas182.2.1Porosidade (ϕ)182.2.2Resistividade Elétrica (R)192.2.3Fator de Formação (F) e a Primeira Lei de Archie202.2.4Índice de Resistividade (I) e Segunda Lei de Archie212.2.5Lei de Darcy222.2.6Condutividade Hidráulica (K)222.2.7Permeabilidade Intrínseca (k)232.3Perfil de Raios Gama - GR262.3.2O Perfil da Normal Curta - SN27								
1	Car	acteriz	zação da Área do Estudo	11					
	1.1	Locali	zação	11					
	1.2	Geolog	gia	11					
	1.3 Sequências sedimentares								
	1.4	Litoes	tratigrafia	14					
	1.5 Projeto de Abastecimento Águas do Sertão								
2	Fun	damer	ntos da Perfilagem Geofísica de Poços	17					
	2.1	Conce	itos Gerais	17					
	2.2	Propr	iedades Hidrogeofísicas das Rochas	18					
		2.2.1	Porosidade (ϕ)	18					
		2.2.2	Resistividade Elétrica (R)	19					
		2.2.3	Fator de Formação (F) e a Primeira Lei de Archie	20					
		2.2.4	Índice de Resistividade (I) e Segunda Lei de Archie \ldots \ldots \ldots	21					
		2.2.5	Lei de Darcy	22					
		2.2.6	Condutividade Hidráulica (K)	22					
		2.2.7	Permeabilidade Intrínseca (k)	23					
	2.3	Perfis	Geofísicos	25					
		2.3.1	O Perfil de Raios Gama - GR	26					
		2.3.2	O Perfil da Normal Curta – SN	27					
		2.3.3	O Perfil de Indução Profunda – DIR	27					
		2.3.4	O Perfil Sônico – DT	28					
		2.3.5	O Perfil Cáliper – CAL	30					

3	Met	todolog	gia Adotada	31
	3.1	Escolh	a da Área de Trabalho	31
	3.2	Aquisi	ção dos Dados	31
	3.3	Parâm	netros Hidrogeofísicos	32
		3.3.1	Escolha do Poço e das Zonas de Estudo	32
		3.3.2	Obtenção dos Parâmetros Hidrogeofísicos	33
	3.4	Coefic	iente de Determinação (R^2)	34
4	Aná	alise de	e Resultados e Discussões	36
	4.1	Interp	retação dos Valores dos Parâmetros Hidrogeofísicos	36
		4.1.1	Volume de Folhelho (VSH)	36
		4.1.2	Porosidade Efetiva (PHIE)	37
		4.1.3	Resistividade da Água da Formação $(R_{ m w})$	37
		4.1.4	Fator de Formação (F)	38
		4.1.5	Permeabilidade Intrínseca (k)	38
		4.1.6	Condutividade Hidráulica (K)	39
		4.1.7	Coeficiente de Geometria Porosa (m)	39
	4.2	Correl	ações entre os Parâmetros Hidrogeofísicos	40
		4.2.1	PHIE x k x VSH	40
		4.2.2	FSN x k x VSH	41
		4.2.3	FDIR x k x VSH	41
		4.2.4	$R_{\rm w}$ SN x FSN x VSH	41
		4.2.5	$R_{\rm w}$ DIR x FDIR x VSH	42
		4.2.6	$K \ge k \ge \mu$	43
		4.2.7	$\mu \ge K \ge k \ldots \ldots$	44
5	Con	ıclusõe	es e Recomendações	46
A	grade	ecimen	tos	48
A	Pla	nilha d	le Cálculos Interpretativos	49
Re	eferê	ncias		61

Lista de Tabelas

3.1	Zoneamento do poço São João da Fortaleza	33
4.1	Caracterização hidrogeofísica das zonas do poço São João da Fortaleza	37
4.2	Equações da reta de tendência linear e coeficiente de determinação para as	
	correlações entre os parâmetros hidrogeofísicos	40

Lista de Figuras

1.1	Mapa Geográfico da localização da cidade de Cícero Dantas e recorte mos-	
	trando mapa geológico das bacias do Recôncavo, Tucano e Jatobá. Adaptado	
	de Magnavita et al. 2003	12
1.2	Localização do poço	12
1.3	Carta Estratigráfica da Bacia do Tucano Sul-Central (Costa et al., 2007)	16
2.1	Esboço esquemático do dispositivo utilizado por Darcy (Cabral, 2008). $\ $. $\ $.	23
2.2	Modelo clássico das porosidades total e efetiva (Nery, 1996).	30
3.1	Perfil do poço tubular profundo São João da Fortaleza, contendo as curvas	
	de raios gama (GR), potencial espontâne o (SP), normal curta (SN), indução $% \left(\left({{\rm{SN}}} \right) \right)$	
	profunda (DIR), sônico (DT) e cáliper (MCAL)	32
4.1	Cross-plot de três eixos dos valores de PHIE, k e VSH com os valores de VSH	
	na escala de cores.	41
4.2	Cross-plot de três eixos dos valores de FSN, k e VSH com os valores de VSH	
	na escala de cores.	42
4.3	Cross-plot de três eixos dos valores de F DIR, k e VSH com os valores de VSH	
	na escala de cores	42
4.4	Cross-plot de três eixos dos valores de $R_{\rm w}$ SN, F SN e VSH com os valores de	
	VSH na escala de cores	43
4.5	Cross-plot de três eixos dos valores de $R_{\rm w}$ DIR, FDIR e VSH com os valores	
	de VSH na escala de cores	43
4.6	Cross-plot de três eixos dos valores de K , $k \in \mu$ com os valores de μ na escala	
	de cores	44
4.7	Cross-plot de três eixos dos valores de μ,K e k com os valores de k na escala	
	de cores	45
A.1	Planilha de cálculos interpretativos referentes à zona A - parte um	49
A.2	Planilha de cálculos interpretativos referentes à zona A - parte dois.	50

A.3	Planilha	de	cálculos	interpretativos	referentes	à zona	A - parte três	51
A.4	Planilha	de	cálculos	interpretativos	referentes	à zona	B1 - parte um	52
A.5	Planilha	de	cálculos	interpretativos	referentes	à zona	B1 - parte dois	53
A.6	Planilha	de	cálculos	interpretativos	referentes	à zona	B1 - parte três	54
A.7	Planilha	de	cálculos	interpretativos	referentes	à zona	B2 - parte um	55
A.8	Planilha	de	cálculos	interpretativos	references	à zona	B2 - parte dois	56
A.9	Planilha	de	cálculos	${\it interpretativos}$	references	à zona	B2 - parte três	57
A.10	Planilha	de	cálculos	${\it interpretativos}$	references	à zona	C - parte um. \ldots .	58
A.11	Planilha	de	cálculos	${\it interpretativos}$	references	à zona	C - parte dois	59
A.12	Planilha	de	cálculos	${\it interpretativos}$	references	à zona	C - parte três	60

Introdução

A indústria da água subterrânea é a segunda maior usuária da perfilagem geofísica no Brasil dispõe, geralmente, dos perfis elétricos convencionais e/ou indutivos e raios gama, eventualmente, microperfil, cáliper e sônico, para realizar suas interpretações. Na indústria do petróleo, usa-se uma gama bem maior de perfis, porque ela necessita de maiores informações para identificar a geometria e a estruturação dos reservatórios; o tipo dos fluidos (gás, óleo, suas misturas e/ou água) presentes nos poros e quantificar o volume de hidrocarboneto "in place", para uma efetiva exploração econômica. Por outro lado, a indústria da água busca primariamente posicionar corretamente seus filtros naqueles aquíferos de melhor qualidade de água (em função do teor de Sais Dissolvidos Totais), de acordo com o projeto estabelecido (uso humano, animal, industrial etc.) e prolongar a vida útil do aquífero.

Todavia, inexiste ainda a possibilidade de se saber, quantitativamente, em qual ou quais intervalos porosos ocorrem as melhores permeabilidades e condutividades, propriedades estas de fundamental conhecimento para uma mais racional e econômica explotação do bem, quer petróleo, quer água.

Existem programas comerciais desenvolvidos por empresas multinacionais de perfilagem geofísica que mostram um "Índice de Permeabilidade", que exige o conhecimento da metodologia aplicada na sua obtenção, vez que tradicionalmente são realizados para fins de uso na indústria do petróleo, onde podem ocorrer sistemas com 2 ou 3 tipos diferentes de fluido, o que poderia se tornar uma informação inadequada a indústria da água subterrânea. Em relação a água subterrânea, nenhum perfil geofísico mede diretamente tanto a condutividade hidráulica (K) como a permeabilidade intrínseca (k), propriedades estas que são obtidas por meio de medições dinâmicas em testes de bombeamento ou em ensaios de laboratórios.

Este trabalho visa, portanto, estimar propriedades hidrogeofísicas importantes para a indústria da água subterrânea, por meio dos perfis geofísicos disponibilizados pela CERB (Companhia de Engenharia Rural da Bahia) e pela sua prestadora Hydrolog serviços de perfilagem Ltda.

Capítulo 1

Caracterização da Área do Estudo

1.1 Localização

A área de estudo faz parte da bacia sedimentar de Tucano, na sub-bacia de Tucano Central, que possui uma extensão de 14700 km². Ela está localizada sobre as bacias hidrográficas do Rio Itapicuru e Rio Real, no Nordeste da Bahia. O acesso à cidade onde o poço foi perfurado, Cícero Dantas, se dá, partindo de Salvador, por meio das rodovias BR-324, BR-116, BR-110 e Estrada do Coco.

1.2 Geologia

A bacia do Tucano ocupa uma área de aproximadamente 30500 km^2 e é uma das bacias constituintes do rifte intracontinental do Recôncavo-Tucano-Jatobá que evoluiu como um braço abortado da ruptura continental que deu origem ao Oceano Atlântico Sul. Ela é subdividida, de acordo com suas feições estruturais, em três sub-bacias: Tucano Sul, Tucano Central e Tucano Norte, as quais estão representadas na Figura 1.1, contidas na também representada bacia do Recôncavo-Tucano-Jatobá.

A bacia do Tucano, bem como a do resto de todo o rifte do Recôncavo-Tucano-Jatobá, possui uma geometria de semi-grábens, cuja assimetria é gerada por uma falha de borda principal. A margem oposta, por seu turno, constitui-se na borda flexural, a qual é limitada por falhas de pequeno rejeito ou posicionada discordantemente sobre o embasamento. Os blocos falhados que formam os semi-grábens da bacia de Tucano são agrupados em compartimentos estruturalmente coerentes que dão origem às sub-bacias, sendo orientados para NE-SW e N-S.

Figura 1.1: Mapa Geográfico da localização da cidade de Cícero Dantas e recorte mostrando mapa geológico das bacias do Recôncavo, Tucano e Jatobá. Adaptado de Magnavita et al. 2003.

A sub-bacia Tucano Norte possui mais semelhanças estratigráficas e estruturais com a bacia de Jatobá, localizada mais ao Norte, equanto, as sub-bacias de Tucano Sul e Central possuem maiores afinidades entre si (Magnavita et al., 2003).

Figura 1.2: Localização do poço.

1.3 Sequências sedimentares

O registro estratigráfico das sub-bacias de Tucano Sul e Central Figura 1.3, é constituído por quatro sequências deposicionais que são representadas por rochas sedimentares do Jurássico Superior e Cretáceo Inferior.

Supersequência Pré-Rifte

 A sequência J20-K05 foi formada num período que existia uma bacia ampla e rasa, com tectonismo incipiente, cujo depocentro situava-se ao sul, na área que abrange o limite entre as bacias do Recôncavo e Camamu. Esta sequência está relacionada ao período de extensão e ao adelgaçamento da crosta que antecede a implantação dos semi-grábens. A sucessão estratigráfica é marcada pela recorrência de ciclos flúvioeólicos. Esses ciclos adelgaçam-se para norte, onde as espessuras dos pelitos e lamitos lacustres são progressivamente maiores.

Supersequência Rifte

Magnavita et al. (2003) estabelece o limite entre os estágios pré-rifte e rifte como sendo a transgressão dos folhelhos lacustres do Membro Tauá (formação Candeias) sobre os arenitos eólicos da formação Água Grande. Portanto, o Membro Tauá constitui o registro inicial da fase rifte. Nessa perspectiva, a transgressão dos folhelhos lacustres do Membro Tauá envolve um contexto inicial de subsidência mecânica sobre os arenitos da formação Água Grande. A deposição dos conglomerados só viria depois de transcorrido o tempo necessário para o soerguimento e erosão das ombreiras do rifte. Desse modo, há uma tendência geral de raseamento, determinada pelo progressivo assoreamento do sistema lacustre inicial, sob elevadas taxas de subsidência tectônica.

- A Sequência K10-K20 apresenta depocentros com elevadas taxas de subsidência e áreas plataformais relativamente estáveis mais amplas na borda flexural, caracterizando as sub-bacias de Tucano Sul e Central nos períodos do Eoberriasiano e Eohauteriviano. O sistema lacustre aprofundou-se e as taxas de subsidência superaram as de sedimentação, depositando pelitos. Os arenitos, por sua vez, se intercalam com os pelitos de forma descontínua nas bordas flexurais. A sub-bacia de Tucano Central apresenta ainda depósitos fluviais vinculados ao grupo Massacará, na borda flexural.
- A Sequência K30-K40 representa um estágio avançado de assoreamento da Bacia de Tucano. Na sub-bacia de Tucano-Central predominam os sistemas fluviais (formação

São Sebastião). Possui seção praticamente arenosa com o padrão de sedimentação fluvial, que pode ter sido retrabalhado pelo vento, como atestam os registros de arenitos eólicos. Nos depocentros desta sub-bacia desenvolveram-se ciclos deltáicos.

Supersequência Pós-Rifte

• A Sequência K50 compreende a fase de subsidência térmica da bacia, onde há depósitos aluviais (conglomerados e arenitos) da formação Marizal. Esta formação recobre grande parte da Bacia do Tucano.

1.4 Litoestratigrafia

Designadas por geólogos da Petrobrás e representadas na carta estratigráfica da bacia Tucano Sul-Central na Figura 1.3, a sub-bacia do Tucano Central possui as seguintes unidades litológicas, pertencentes ao Grupo Massacará:

- A Formação São Sebastião se caracteriza por uma espessa sequência de arenitos amareloavermelhados com granulometria fina a média intercalados com argilas siltíticas. Na parte mediana essas intercalações cedem lugar para um número maior de intercalações arenosas, finalizadas por clastos mais grosseiros (Viana et al., 1971).
- A Formação Marizal que sobrepõe a São Sebastião, é constituída por um pacote de arenitos argilosos com finas camadas de siltitos e folhelhos. Os arenitos são malselecionados, com granulometria que varia de fina a grosseira. Os conglomerados são compostos por clastos de arenitos, calcários, quartzo e sílex em matriz arenosa (Viana et al., 1971).
- O Grupo Barreiras, por sua vez, é formado por uma cobertura sedimentar continental de areias grosseiras, com estratificações cruzadas; argilas cinzas-avermelhadas, roxas e amarelas; além de arenitos grosseiros e conglomeráticos mal classificados (Viana et al., 1971).

1.5 Projeto de Abastecimento Águas do Sertão

O Projeto Tucano Nordeste Fase 1 que passou a ser chamado de Projeto de Abastecimento Águas do Sertão foi desenvolvido pela Companhia de Engenharia Hídrica e de Saneamento da Bahia (CERB), para usos múltiplos (abastecimento humano, irrigação e dessedentação animal), com vista à ampliação da oferta de água e das possibilidades de desenvolvimento regional do Nordeste do Estado, além de reduzir a escassez de água no semiárido baiano. Neste cenário, foram perfurados poços tubulares profundos para exploração de altas vazões de forma simultânea, intensiva e continua nos aquíferos Marizal e São Sebastião, nos municípios de Banzaê, Cícero Dantas, Ribeira do Pombal e Euclides da Cunha (Peixinho, 2016).

Bk	BR PETROBRAS SUB-BA									AS DE	TUC	INO SUL E CENTRAL	IVAN PEIXOTO COSTA et al.	
Ma	PERÍOCO	GEOCRO ÉPOC	DNOLOGIA A IDADE	NATUREZADA	AMBIENTE DEPOSICIONAL	discordâncias	GRUPO	LITOESTRAT FORMAÇÃO	IGRAFIA MEMBRO	ESPESSUR# INÁXIVA (m)	SEQÜÉNCIAS	400 NW SE	TECTÔNICA E MAGMATISMO	Ma
0- 10- 20-	0 Z 0 U Z Paleog	PLEISTOC PLIOCE NIOCENO	ENO NO NEO TORTONIAN VESO ERRAVALIA VESO ERRAVALIA LANGHIAN BURDIGALIA AQUITANIAN NO CHATTIANC	0 00) 0 00 0 00 0 00 0 0	LEQUES ALUVIAIS			SPA BARREIRAS		60	<u>N60</u> , N50	ANTINA		-0 -10 -20
100-		NEO	<u>CENOMANIA</u>	NO								7		-100
105 -			ALBIANO											- 105
115 -			ALICO)		LEQUES ALLVIAIS	ALAGOAS		MARIZAL		240	_K50_	W2-reason	PÓS - RIFTE	- 115
120	ÁCEO	0	O ALAG	DAS										-120
125 -	CRET	Ŭ	BARRE- MANO	IÁ NCA		JIQUA	CARA	-POÇO VERDE SILO TINO		- <u>110</u>	40	RL		- 125
130-			ARA HAUTE- RMANO		PELTAS		MASSA	TAQUIPE		900 2400	K30 - K	IS POL	RIFTE	-130
135 -			O Z V VALAN- O GNANO D GNANO D D		STRE ZAICC	RIO DA SERRA SUP.	ILHAS			250	0 - K20			- 135 140
145 -			Z SER BERRIA SIANO	RA		RIO DA SERRA MED. RIO DA SERRA INF.	SANTO AMARO	AGUA GRANDE U ITAPARICA SERGI	/TAUA	00 100 55 61 315	0- K10	CAN	DPÉ . PIETE	- 145
150—	RÁSSICO	NEO	DO Joř Tithonian	M 10 0	LACUSTRE FLÚVIO-EÓLICO		BROTA	ALIANÇA	CAPIANGA BOIPEBA	160	ŇŸ	се се вр	T INC "THE IC	-150
250—			KINMERIDGIA	NO 5					Cá7IIMRá	55				, —250
300	C D				n. LAUUUIKE 3. restrito altoràneo	NEOPERMANA		AFLIGIDOS	PEDRÃO	50	1		SINECLISE	-300 -350 -400
450— 500— 550—	\$ 0 €	PRÉ.C	MBRIANO			EMD		M E N T	0			CRÁTON DO SÃO FRANCISCO / FAIXA SERGIPANA	Bacia de antepaís	-450 -500 -550

Figura 1.3: Carta Estratigráfica da Bacia do Tucano Sul-Central (Costa et al., 2007).

Capítulo 2

Fundamentos da Perfilagem Geofísica de Poços

2.1 Conceitos Gerais

Geofísica de Poço ou Perfilagem Geofísica foi criada, desenvolvida e fomentada pela indústria do petróleo. É o ramo da Geofísica aplicada ao estudo do conjunto de técnicas e aquisição, processamento e interpretação das propriedades físicas das rochas atravessadas por um poço com os principais objetivos de: produzir um modelo geológico da acumulação de um bem mineral ou fluido e a de qualificar e quantificar a explotação desse bem. De acordo com Nery (2013), a perfilagem de poços teve seu início em setembro de 1927, quando Henri Doll, Charles Scheibli e Roger Jost, liderados pelos dois irmãos Conrad e Marcel Schlumberger, resolveram aplicar o método da eletrorresistividade em um poço exploratório de petróleo do campo de Pelchebronn, na França.

Com o tempo, a técnica da perfilagem foi sendo aperfeiçoada e também incrementada, deixando de ser restrita ao método elétrico e passou a englobar métodos que revelavam outras propriedades físicas das rochas, tais como as acústicas, radioativas, térmicas e magnéticas, por exemplo. O resultado da perfilagem geofísica (o perfil), é o registro contínuo, em escala adequada de parâmetros físicos, químicos, térmicos, mecânicos etc., ao longo de um poço.

A perfilagem teve seu desenvolvimento voltado inicialmente para atender às demandas da indústria do petróleo, que ocorre geralmente em meio a rochas sedimentares (siliciclásticas e carbonatos) capazes, de ao longo do tempo, gerar hidrocarbonetos a partir da matéria orgânica com ela depositada. Estas rochas também são armazenadoras de água subterrânea, que pode vir a suprir as necessidades humanas, animais e industriais.

2.2 Propriedades Hidrogeofísicas das Rochas

As rochas siliciclásticas ou terrígenas, como também podem ser chamadas, e os carbonatos são formados por quatro principais membros: arcabouço, matriz, cimento e poros.

O arcabouço, ou grãos, é a parte da rocha formada por frações mais grosseiras, independente da composição ou da natureza das mesmas e é o responsável pela sustentação da rocha. A matriz corresponde à fração fina da rocha que é transportada por suspensão sendo a responsável pela consistência da rocha e também pela diminuição da sua porosidade e permeabilidade. O cimento corresponde à fração precipitada quimicamente nos poros das rochas. Ele pode ou não existir nas rochas. Quando existe, ele é o responsável pela rigidez das rochas sedimentares e também contribui para a diminuição de sua porosidade. Os poros são os espaços existentes entre os grãos ou partículas, responsáveis pelo armazenamento de fluidos como água, óleo e gás.

Como os sensores elétricos ou acústicos, por exemplo, utilizados nas ferramentas de perfilagem, são incapazes de diferenciar os três tipos de constituintes acima, costuma-se, na prática, considerar que uma rocha sedimentar é constituída apenas de matriz e poros. Aquela corresponde aos sólidos presentes (grãos, cimento e a matriz propriamente dita), e este aos fluidos.

2.2.1 Porosidade (ϕ)

A porosidade é uma das propriedades mais importantes da rocha no que diz respeito às suas características de armazenamento fluido. Essa propriedade expressa a quantidade de vazios em relação ao volume total de um meio. Matematicamente tem-se:

$$\phi = \frac{V_{\rm p}}{V_{\rm t}} = \frac{(1 - V_{\rm m})}{V_{\rm t}} \tag{2.1}$$

sendo ϕ a porosidade, $V_{\rm p}$ o volume de espaços vazios, $V_{\rm m}$ o volume da matriz e $V_{\rm t}$ o volume total da rocha. Portanto, a porosidade é uma grandeza adimensional, podendo ser expressa em forma de porcentagem ou na forma decimal.

Em relação aos diferentes tipos de rochas e solos, existem dois tipos de porosidade:

- Porosidade primária: refere-se à porosidade que surge concomitante à formação da própria rocha ou solo durante o processo deposicional.
- Porosidade secundária: é o resultado dos processos físicos e químicos que a rocha sofreu, como dissolução da sua matriz e fraturas, por exemplo.

Do ponto de vista petrográfico, Schopper (1982) classifica a porosidade em quatro grupos:

- Porosidade intergranular: corresponde ao espaço vazio entre os materiais sólidos fracamente compactados e cimentados.
- Porosidade intercristalina: é a porosidade resultante da contração dos grãos.
- Porosidade fratural: é o resultado de fenômenos químicos e mecânicos sofridos pela rocha.
- Porosidade vugular: corresponde à porosidade causada por organismos, que pode ocorrer tanto durante a formação da rocha como por ação química após a rocha já formada.

Desse modo, a porosidade intergranular seria um tipo de porosidade primária, enquanto a fratural corresponde à secundária e a vugular, por seu turno, trata-se de uma porosidade que pode ser tanto primária quanto secundária.

Lima (2014), distingue a porosidade em três grupos do ponto de vista hidráulico:

- Porosidade total: é definida como a razão do volume total de vazios presentes e o volume total da rocha.
- Porosidade interconectada: corresponde à razão entre o volume de vazios interconectados e o volume total da rocha.
- Porosidade efetiva: é a razão entre o volume de vazios disponível para fluidos livres e o volume total da rocha.

Nas rochas siliciclásticas os fatores que mais influenciam a porosidade são: o grau de seleção, arranjo dos grãos, cimentação, compactação e a argilosidade. Já nos carbonatos, a dissolução, a cimentação, conteúdo de matriz e dolomitização são os principais determinantes da porosidade.

Na perfilagem geofísica de poços a determinação da porosidade se faz, na grande maioria dos casos, por meio dos perfis sônicos, neutrônicos e de densidade.

2.2.2 Resistividade Elétrica (R)

A resistividade elétrica, ou seu inverso, a condutividade, é definida pela lei de Ohm, sendo a constante de proporcionalidade que relaciona a densidade de corrente elétrica \mathbf{J} , em um ponto qualquer de um meio condutor, ao campo elétrico \mathbf{E} no mesmo ponto:

$$\mathbf{E} = R\mathbf{J} \tag{2.2}$$

Em uma rocha sedimentar, onde a matriz é formada principalmente por minerais não condutivos, a condutividade elétrica se deve à presença de seus fluidos nos poros. Desse modo, a condutividade elétrica de uma rocha depende da saturação do eletrólito na rocha, da concentração de íons desse eletrólito e do tipo de íon responsável pela condução da corrente elétrica na rocha. Do mesmo modo, fluidos isolantes como óleo e gás diminuem a condutividade da rocha.

O fluido condutor que fica nos poros das rochas, denominado genericamente de água da formação, é um eletrólito cujos íons dissolvidos, sem a ação de um campo elétrico, movimentam-se aleatoriamente. No entanto, quando submetidos a um campo elétrico, esses íons realizam um movimento ordenado gerando, assim, a capacidade de conduzir a corrente elétrica.

Dentro da rocha, a água da formação não possui apenas um tipo de íon mas sim os mais diversos íons, cada um com uma velocidade de deslocamento distinta, velocidade esta que é diretamente proporcional à condutividade e é chamada de mobilidade (μ). A carga de cada íon (ϵ), bem como a quantidade desses elementos condutores (η), também são proporcionais à condutividade elétrica como podemos ver na fórmula:

$$\sigma = \eta \epsilon \mu \tag{2.3}$$

Os argilominerais, quando presentes nas rochas sedimentares, possuem grande quantidade de cátions adsorvidos em suas paredes que em contato com a água intersticial da formação influenciam consideravelmente a condutividade dessas rochas.

De um modo geral, as resistividades das rochas variam entre 0,2 e 1000 ohm.m. No entanto, rochas com água doce podem passar desse valor, o que é incomum em rochas permeáveis com hidrocarbonetos Nery (2013).

Na perfilagem geofísica de poços as resistividades das rochas podem ser lidas diretamente nos perfis elétricos de princípio galvânico ou indutivos.

2.2.3 Fator de Formação (F) e a Primeira Lei de Archie

Archie (1942), através de experimentos com amostras de formações em laboratório, constatou que a resistividade de uma rocha consolidada completamente saturada com água de elevada salinidade possuía relação linear com a resistividade da água que satura seus poros. Isso quer dizer que a razão $R_{\rm o}/R_{\rm w}$ se mantém constante independente do valor de $R_{\rm w}$. Foi verificado também que a resistividade dessa rocha $(R_{\rm o})$ varia com o inverso da porosidade. Assim, define-se as seguintes relações:

$$R_{\rm w} \propto R_{\rm o} \propto \frac{1}{\phi}$$
 (2.4)

Desse modo, Archie define o parâmetro fator de formação (F):

$$F = \frac{R_{\rm o}}{R_{\rm w}} \propto \frac{1}{\phi} \tag{2.5}$$

sendo que o fator de formação se trata de uma grandeza adimensional. Para que houvesse uma relação direta e não apenas de proporcionalidade, Archie (1942) e posteriormente Winsauer et al. (1953) introduziram, respectivamente, duas constantes empíricas: o coeficiente de geometria porosa (m), que leva em conta a tortuosidade ou a complexidade da rede formada pelos poros interconectados, e o coeficiente litológico (a), que avalia as diferenças litológicas entre as rochas reservatórios. Por aproximação linear em escala logarítmica, temos:

$$\log F = \log a - m \log \phi \tag{2.6}$$

A famosa expressão que ficou conhecida como Lei de Archie é dada por:

$$F = \frac{R_{\rm o}}{R_{\rm w}} = \frac{a}{\phi^m} \tag{2.7}$$

De acordo com Schön (2004), Archie notou que o coeficiente de geometria porosa, m, variava de 1,3 para areias inconsolidadas a 2,2 para arenitos bastante cimentados. Já para carbonatos com porosidade vugular, esse valor poderia chegar a 2,6. Lima e Girão Nery (1999), estabeleceu que o valor de m é de 1,3 para areias e varia de 1,8 a 2,2 nos arenitos. No caso da formação São Sebastião, trabalhos experimentais mostram que o valor 1,82 pode ser aplicado com grande grau de confiabilidade.

2.2.4 Indice de Resistividade (I) e Segunda Lei de Archie

Archie (1942) também propôs a existência de um outro fator, denominado de índice de resistividade, I, sendo definido como a razão entre a resistividade da rocha parcialmente saturada, $R_{\rm t}$, e a resistividade da amostra saturada 100% em água, $R_{\rm o}$. Desse modo, temos:

$$I = \frac{R_{\rm t}}{R_{\rm o}} = \frac{1}{S_{\rm w}^n} \tag{2.8}$$

Reescrevendo a primeira lei de Archie:

$$R_{\rm o} = \frac{aR_{\rm w}}{\phi^m} \tag{2.9}$$

Podemos agrupar as equações a fim de obter:

$$R_{\rm t} = \frac{aR_{\rm w}}{\phi^m S_{\rm w}^n} \tag{2.10}$$

Reescrevendo a equação anterior chegamos à segunda equação de Archie:

$$S_{\rm w}^n = \frac{aR_{\rm w}}{\phi^m R_{\rm t}} \tag{2.11}$$

segundo Schön (2004), n, o expoente da saturação, é uma constante adimensional e varia de 1,42 a 2,55 nos arenitos. E as resistividades são dadas em ohm.m de acordo com a profundidade na qual é lida. No caso deste trabalho, sabe-se que o reservatório é 100% saturado com água. Dessa forma considera-se $S_{\rm w}=1$, de modo que a segunda lei fica:

$$R_{\rm w} = \frac{\phi^m R_{\rm o}}{a} \tag{2.12}$$

2.2.5 Lei de Darcy

Enquanto fazia experimentos sobre o escoamento de água em filtros de areia em um dispositivo similar ao mostrado na Figura 2.1, o engenheiro francês Henry Darcy chegou à conclusão que a vazão (Q) do escoamento (volume por unidade de tempo) era:

- 1. proporcional à seção transversal (A) do filtro;
- proporcional à diferença de cargas hidráulicas (h₁ h₂ = Δh), entre os piezômetros 1 e 2 (Figura 2.1);
- 3. inversamente proporcional à distância (L) entre os piezômetros 1 e 2 (Figura 2.1).

A fórmula de Darcy pode então ser descrita como:

$$Q = KA \frac{(h_1 - h_2)}{L}$$
(2.13)

sendo K o coeficiente de proporcionalidade, chamado de condutividade hidráulica, cuja unidade no sistema internacional é m/s (Cabral, 2008).

2.2.6 Condutividade Hidráulica (K)

A condutividade hidráulica (K) corresponde à medida da facilidade com a qual um meio conduz determinado fluido. No contexto da água subterrânea, refere-se à facilidade da formação aquífera de exercer a função de um condutor hidráulico.

A condutividade hidráulica depende das características tanto do meio poroso quanto das propriedades do fluido que por ele é conduzido. A equação que mostra essa dependência é mostrada a seguir:

$$K = \frac{k\rho g}{\mu} \tag{2.14}$$

sendo (k) a permeabilidade intrínseca do meio poroso, ρ a densidade do fluido, g a aceleração da gravidade e μ a viscosidade do fluido.

Figura 2.1: Esboço esquemático do dispositivo utilizado por Darcy (Cabral, 2008).

2.2.7 Permeabilidade Intrínseca (k)

A permeabilidade intrínseca (k), diferente da condutividade hidráulica, é uma propriedade física que depende somente do meio poroso e não do fluido que é conduzido. Essa propriedade reflete o quão permeável é um meio independente do fluido por ele transmitido. Normalmente a medida da permeabilidade é dada em darcy. Um meio poroso possui permeabilidade intrínseca igual a um darcy quando um único fluido cuja viscosidade vale um centipoise que preenche completamente os seus poros, flui através dele em uma razão de um cm/s/cm² de área transversal sob um gradiente de pressão ou equivalente hidráulico de um atm/cm. Um darcy é equivalente à 9,869233×10⁻¹³ m².

No petróleo, o intérprete lida com um sistema de um, dois ou três tipos diferentes de fluidos (água, petróleo e/ou gás), cada qual com características de viscosidade ou fluidez, ocasionando problemas operacionais ou interpretativos, porquanto a permeabilidade efetiva é sempre menor do que a absoluta, pois um fluido reduz a permeabilidade do outro, quando mais de um fluido satura a rocha.

Na água subterrânea, o intérprete raciocina mais facilmente devido ao único fluido presente nos aquíferos a interpretar.

Fatores que afetam os valores da permeabilidade

Segundo Crain (2000), a permeabilidade em rochas reservatório pode variar de 1 milidarcy em arenitos com baixa porosidade a cerca de 50 darcys em rochas fraturadas. Em alguns folhelhos reservatórios de gás, a permeabilidade pode ser tão baixa quanto alguns microdarcys. A qualidade de um reservatório, julgada pela permeabilidade intrínseca (k), em milidarcy, é muito baixa se k < 0,1, baixa se 1 < k < 10, moderada se 10 < k < 50, boa se 50 < k <250 e excelente se k > 250 (Tiab e Donaldson, 2015).

A magnitude dos valores da permeabilidade é influenciada por diferentes fatores. A presença de argila, por exemplo, afeta a leitura dos perfis, podendo gerar grande impacto nos valores de permeabilidade. Isso se deve ao fato de que os grãos menores tendem a ocupar os espaços vazios deixados pelas areias de modo a dificultar a passagem do fluido, diminuindo, assim, a permeabilidade. O estágio de consolidação da rocha, por sua vez, é uma propriedade mecânica que influencia medidas acústicas, além de interferir também na estabilidade das paredes do poço e, por fim, na facilidade com que o fluido passa pelos poros da rocha, ou seja, na permeabilidade.

A presença de fraturas e estratificações nas rochas são fatores importantes na determinação da permeabilidade. A existência de fraturas aumenta a permeabilidade das rochas, visto que são criados novos caminhos para que os fluidos as percolem. Em rochas estratificadas, a permeabilidade pode apresentar grande variação e irá depender também das espessuras dessas camadas.

Outro fator de grande peso no controle da permeabilidade é o tamanho dos grãos que formam as rochas. O primeiro registro da relação entre a permeabilidade e o tamanho do grão foi feito por Hazen (1911), sendo posteriormente observada por vários pesquisadores. De modo geral, para um contexto de boa seleção de grãos, quanto maior o tamanho dos grãos maior será a permeabilidade, visto que o fluido encontrará gargantas maiores para percolar.

De modo geral, o processo de sedimentação torna o meio anisotrópico para a permeabilidade, fazendo que a permeabilidade horizontal seja muito maior que a permeabilidade vertical. A compactação dada a aceleração gravitacional corrobora para este fenômeno. Desta forma, a correlação entre as permeabilidades de laboratórios, que são horizontais e verticais podem não corresponder integralmente aos resultados mostrados nos perfis.

Determinação da permeabilidade

A permeabilidade de uma rocha pode ser medida em testemunhos e também por meio de testes de produção. No caso da indústria da água, no entanto, devido aos demasiados custos dos demais métodos, é mais comum a determinação a partir do uso de informações derivadas dos perfis. A permeabilidade pode ser calculada tanto através dos perfis de resistividade quanto pelos de porosidade, sônico, densidade e neutrônico, sendo estes últimos mais comuns. Em muitos casos existe uma correlação entre a porosidade e a permeabilidade. No entanto, tal correlação dirá respeito a uma determinada formação, não sendo efetiva para formações diferentes. A relação mais geral entre porosidade e permeabilidade foi proposta por Wyllie e Rose (1950), e é dada por:

$$k = a \frac{\phi^b}{S_{\rm wi}^c} \tag{2.15}$$

sendo S_{wi} a saturação de água irredutível e os parâmetros $a, b \in c$ empíricos são determinados estatisticamente.

Baseadas na equação de Wyllie, outras equações foram propostas possibilitando o cálculo da permeabilidade através da porosidade e da saturação de água irredutível. Um exemplo é a equação de (Coates e Dumanoir, 1973):

$$k = \left(100 \frac{\phi^2 (1 - S_{\rm wi})}{S_{\rm wi}}\right)^2 \tag{2.16}$$

Outros modelos consideram a permeabilidade sendo função apenas da porosidade, como o proposto por Jorgensen (1989):

$$k = 1,828 \times 10^5 \left(\frac{\phi^{m+2}}{(1-\phi)^2}\right)^{1,1}$$
(2.17)

Conhecendo a permeabilidade é possível calcular o coeficiente de geometria porosa m por meio da equação desenvolvida por Raiga-Clemenceau (1977):

$$m = 1,28 + \frac{2}{\log k + 2} \tag{2.18}$$

2.3 Perfis Geofísicos

Na perfilagem de poços existe uma grande variedade de ferramentas aplicadas à exploração de petróleo. No entanto, na avaliação de aquíferos, o número de sondas normalmente utilizadas é bem menor, isso devido aos altos custos ou pela demasiada especialização daquelas aplicadas na exploração de petróleo.

Geralmente são usados, na exploração hidrogeofísica e na avaliação de aquíferos, o perfil cáliper, os perfis de raios gama naturais (RG), o perfil de potencial espontâneo (SP), as diversas variações dos perfis elétricos (usando eletrodos ou por indução), os perfis de porosidade e eventualmente o microperfil.

Segundo Delhorme (2007), a ressonância nuclear magnética (NMR), muito usada na medicina, passou a ser extensivamente usada na indústria de petróleo em parte para resolver o problema da permeabilidade, visto que ela poderá proporcionar informações tanto sobre a porosidade como a distribuição do tamanho dos poros, originando perfis contínuos de NMR. Seu princípio físico refere-se ao fato dos núcleos dos átomos responderem a campos magnéticos externos, gerando sinais detectáveis.

Neste trabalho, os perfis utilizados foram o perfil de raios gama (RG), o perfil da normal curta (SN), o perfil de indução profunda (DIR), o perfil sônico (DT) e o perfil cáliper (CAL).

Detalhes sobre apresentação, usos e limitações desses perfis podem ser encontrados em Nery (2013).

2.3.1 O Perfil de Raios Gama - GR

O perfil de raios gama mede a radioatividade natural das formações com energias da ordem de 1,4 a 2,6 MeV. A ferramenta de raios gama é utilizada na discriminação litológica e quantificação da argilosidade. Este fato é possível graças a somente uma pequena parcela de minerais abundantes oferecer respostas significativas da propriedade de radioatividade. O sinal gerado neste tipo de perfil geofísico é resultado dos sinais de vários radioisótopos, principalmente de K⁴⁰, Th²³², U²³⁸ e dos produtos gerados desses decaimentos.

Devido a elevada abundância na superfície da Terra, o K⁴⁰ é considerado como o maior responsável pelas medidas captadas pelo perfil de Raios Gama. Ele está presente em minerais como o K-feldspato e micas (muscovita, biotita etc). Em rochas sedimentares, a curva de raios gama geralmente reflete o conteúdo argiloso da rocha, pois os elementos radioativos normalmente ficam concentrados em minerais argilosos, em folhelhos. O contrário ocorre, portanto, com as formações "limpas", que possuem um nível radioativo muito baixo.

Desse modo, é possível individualizar potenciais aquíferos, que serão as partes dos perfis com níveis radioativos baixos. Por esse motivo, o perfil GR é indispensável em qualquer programa de perfilagem de poço.

A unidade do perfil GR é o Grau Padrão API (UAPI ou GAPI), que é a medida da radioatividade de uma rocha artificial, que serve de normalização, na qual foi disseminada quantidade conhecida de U^{238} , Th^{232} e K^{40} . Ela representa 1/200 da deflexão entre um valor máximo e um mínimo de um poço padrão na Universidade de Houston, USA.

Por meio do perfil GR é possível calcular o volume de argila $(V_{\rm sh})$ que é uma importante propriedade dos reservatórios. Para tal, utiliza-se inicialmente o índice de raios gama (IGR)que normaliza os intervalos dos perfis, utilizando os valores máximos e mínimos de GR. O IGR é dado por:

$$IGR = \frac{GR_{log} - GR_{min}}{GR_{max} - GR_{min}}$$
(2.19)

sendo GR_{log} corresponde ao valor de GR lido no perfil em uma dada profundidade, GR_{min} se trata do valor de GR mínimo escolhido e GR_{max} corresponde ao máximo escolhido, todos

os valores são expressos em GAPI.

Baseando-se na idade e compactação das rochas, vários autores propõem expressões não lineares para o cálculo do $V_{\rm sh}$ a partir do *IGR*. Neste trabalho, será utilizada a expressão de Stieber (Asquith et al., 2004):

$$V_{\rm sh} = \frac{IGR}{A - (A - 1)IGR} \tag{2.20}$$

sendo A igual a 3 para rocha do cretácio e igual a 2 para rocha do terciário.

As limitações desse perfil estão relacionadas principalmente às mineralizações radioativas eventuais que podem gerar picos no perfil que mascaram os valores de radioatividade das demais formações ali presentes. Além disso, o uso do perfil de raios gama é restrito a identificação de dois componentes volumétricos (folhelho e não folhelho).

2.3.2 O Perfil da Normal Curta – SN

A ferramenta Normal Curta – SN faz parte do grupo de ferramentas de eletrodos galvânicos. Essas ferramentas, de modo geral, medem a diferença de potencial existente entre dois eletrodos devido a injeção de corrente elétrica no solo por outros dois eletrodos. De posse do valor da diferença de potencial, é possível calcular a resistividade elétrica entre os eletrodos.

A ferramenta Normal Curta normalmente é equipada com quatro eletrodos: um emissor (A), um receptor de corrente (B) e dois eletrodos (M e N), que medem a diferença de potencial. Nesta ferramenta a separação entre os eletrodos A e M é de 16 polegadas, fazendo parte do grupo de perfis elétricos convencionais (ES ou EL).

Os principais problemas relacionados ao perfil da normal curta estão relacionados a poços com lamas salgadas (> 30000 ppm) e a camadas muito finas (< 12 metros).

2.3.3 O Perfil de Indução Profunda – DIR

A fim de se obter medidas de resistividade de camadas em poços contendo lamas muito resistivas, Doll et al. (1949) introduziu a perfilagem elétrica via indução. Para estas situações, a utilização de eletrodos não obtém respostas satisfatórias. O perfil de indução DIR, ou Deep Induction Resistivity, se diferencia dos perfis elétricos galvânicos convencionais por não ser necessária a existência de meios condutivos para funcionar, tendo como princípio a propagação radial de campos eletromagnéticos para medidas de condutividade.

O funcionamento da ferramenta de indução se baseia na geração do campo eletromagnético primário pela bobina emissora de corrente, sendo este campo concêntrico ao eixo da ferramenta. Devido ao campo primário, são induzidas correntes elétricas alternadas na formação, chamadas de correntes de Foucault, que estão defasadas de 90° em relação ao campo da bobina emissora. Este campo elétrico induzido gera um novo campo na formação, gerando uma nova corrente elétrica mais radialmente afastada que gera outro campo magnético, repetindo o processo e fazendo com que o sinal se propague no interior da formação. De modo geral, quando a lama do poço não é muito condutiva, o campo primário tem grande penetração na formação atingindo a zona virgem. Os campos magnéticos primário e secundário são medidos pela bobina receptora. As diferenças de fases e amplitudes permitem a individualização dos sinais.

A principal limitação deste perfil diz respeito à sua aplicação em fluidos de perfuração muito salgados (> 30000 ppm), pois a corrente alternada tenderia a circular no fluido de perfuração e não adentraria na formação para que se fizesse possível o seu estudo. Como na indústria da água subterrânea utilizam-se lamas mais doces, provenientes de lagos e rios, não ocorre este tipo de preocupação.

Normalmente, é feita a associação da ferramenta de indução à ferramenta normal curta a fim de se verificar se a formação é ou não permeável. A separação das curvas RSN e DIR revelam qualitativamente se a camada é permeável. Caso haja a separação entre as curvas, o aquífero é dito permeável. Caso contrário, é dito que ele não possui permeabilidade suficiente para a produção de fluido.

2.3.4 O Perfil Sônico – DT

O Perfil Sônico, que está na categoria dos perfis acústicos, tem como princípio o registro da medida do tempo que uma onda compressional leva para percorrer uma formação. Como a velocidade da onda acústica varia com as características do meio no qual se propaga, haverá diferença no registro entre uma rocha sem fluido e uma rocha preenchida por fluido. As ondas sonoras percorrem mais rapidamente os sólidos, depois os líquidos e, por fim os gases.

A importância do perfil sônico vem da sua relação com a porosidade, o que permite o cálculo desta última através dos registros dos tempos de trânsito. Segundo Wyllie e Rose (1950), o tempo de trânsito é o valor médio, ponderado volumetricamente, entre os tempos dos elementos envolvidos na trajetória do impulso sonoro.

Admitindo-se que uma rocha seja formada por uma matriz sólida, cujo tempo de trânsito é $\Delta t_{\rm m}$ ou velocidade $V_{\rm m}$, por um fluido cujo tempo é $\Delta t_{\rm f}$ ou velocidade $V_{\rm f}$, e por poros, representados pela porosidade ϕ , a diferença de tempo (Δt) ou a velocidade (V) a ser registrada no perfil será dada por:

$$\Delta t = \phi \Delta t_{\rm f} + (1 - \phi) \Delta t_{\rm m} \tag{2.21}$$

Em termos de velocidades, a Equação de Wyllie e Rose (1950) será:

$$\frac{1}{V} = \frac{\phi}{V_{\rm f}} + \frac{(1-\phi)}{V_{\rm m}}$$
(2.22)

e a porosidade sônica será dada por:

$$\phi_{\rm s} = \frac{\Delta t - \Delta t_{\rm m}}{\Delta t_{\rm f} - \Delta t_{\rm m}} \tag{2.23}$$

sendo $\phi_{\rm s}$ a porosidade obtida através do uso do perfil sônico

As condições de Wyllie para o uso da equação 2.21 são: as rochas deverão estar totalmente saturadas com água ($S_w=1$), com porosidade intergranular, compactadas e sem argilas ($V_{sh}=0$). Como na prática nem sempre essas condições serão encontradas, algumas correções são realizadas para a obtenção de valores mais condizentes com a realidade. Dentre essas correções estão aquelas devido ao efeito da ausência de compactação, ao efeito da argilosidade e ao efeito de hidrocarbonetos. Das quais as duas primeiras serão realizadas neste trabalho e a última será ignorada, visto que não se trata de uma área com hidrocarbonetos.

A correção devido à ausência de compactação é necessária por conta do aumento do tempo de trânsito registrado, causado pela atenuação das ondas que provoca o estiramento nas amplitudes. A atenuação, por sua vez, ocorre devido ao aumento da quantidade de água, em relação à matriz, visto que nas rochas compactadas a água suporta a pressão nas camadas sobrepostas. Segundo Wyllie e Rose (1950), para uma camada ser dita compactada, o tempo médio dos folhelhos ($\Delta t_{\rm sh}$) sobre e sotopostos a esta camada devem ser menores que 100 μ .s/pé. Para os folhelhos que não atenderem à esta condição, a seguinte correção deverá ser aplicada:

$$\phi_{\rm sc} = \phi_{\rm s} \frac{100}{\Delta t_{\rm sh}} \tag{2.24}$$

No presente trabalho o $\Delta t_{\rm sh}$ encontrado foi 140 $\mu/{\rm p\acute{e}}$ o que tornou necessário a correção do efeito da compactação. A fim de se obter a porosidade corrigida pelo efeito da compactação ($\phi_{\rm sc}$) a equação 2.24 foi utilizada.

Devido a presença de argila nas camadas, a correção por conta do efeito da argilosidade foi também realizada no presente trabalho. A correção deste efeito se faz necessária por que a argila aumenta a quantidade de água intersticial (comparadas àquelas limpas ou sem argila) o que faz com que a velocidade do som seja atenuada, aumentando, assim, o Δt registrado. Para o estudo do efeito da argilosidade, o modelo da Figura 2.2 será adotado.

Realizando um balanço dos tempos e materiais, temos:

$$\Delta t = \Delta t_{\rm m} \left(1 - \phi_{\rm e} - V_{\rm sh} \right) + V_{\rm sh} \Delta t_{\rm sh} + \phi_{\rm e} \Delta t_{\rm f} \tag{2.25}$$

sendo $\phi_{\rm e}$ a porosidade efetiva da rocha. Isolando-a, tem-se:

$$\phi_{\rm e} = \frac{\Delta t - \Delta t_{\rm m}}{\Delta t_{\rm f} - \Delta t_{\rm m}} - V_{\rm sh} \left(\frac{\Delta t_{\rm sh} - \Delta t_{\rm m}}{\Delta t_{\rm f} - \Delta t_{\rm m}}\right)$$
(2.26)

que por simpliciade pode ser escrita como:

$$\phi_{\rm esc} = \phi_{\rm es} - V_{\rm sh} \phi_{\rm sh} \tag{2.27}$$

sendo $\phi_{\rm sh}$ a porosidade obtida por meio do perfil sônico para o tempo de trânsito registrado numa zona de folhelho ($\Delta t_{\rm sh}$).

Figura 2.2: Modelo clássico das porosidades total e efetiva (Nery, 1996).

2.3.5 O Perfil Cáliper – CAL

O perfil cáliper é usado para medir o diâmetro do poço com a profundidade. O registro do perfil é contínuo, o que torna possível a detecção de zonas com desabamento e com formação de reboco. A identificação dessas zonas é importante porque em zonas onde ocorrem desabamentos ou onde o reboco é muito espesso, a qualidade das medidas elétricas e acústicas ficam prejudicadas.

O cáliper é formado por dois ou mais braços que ficam pressionados contra a parede do poço. Como o poço não se trata de um cilindro perfeito, esse diâmetro pode variar para uma mesma seção a depender da posição dos braços da ferramenta. Este fato pode gerar erros na medida do diâmetro que serão maiores tanto mais irregulares forem as seções. Como existem ferramentas cáliper com diferentes números de braços, é intuitivo inferir que quanto mais braços o cáliper tiver, mais precisas serão as medidas por ele realizadas.

O registro do perfil cáliper é geralmente realizado em polegadas. Uma polegada é equivalente a 0,0254 metro.

Capítulo 3

Metodologia Adotada

3.1 Escolha da Área de Trabalho

Este trabalho tem por objetivo o estudo do comportamento de alguns parâmetros hidrogeofísicos em quatro zonas do poço tubular profundo São João da Fortaleza localizado na cidade de Cícero Dantas no nordeste da Bahia.

3.2 Aquisição dos Dados

Para a realização deste trabalho foi necessário recorrer ao banco de dados das seguintes empresas:

- CERB Companhia de Engenharia Ambiental e Recursos Hídricos da Bahia;
- Hydrolog Serviços de Perfilagem Ltda.

A CERB contribuiu com as fichas de poços que contêm: mapa geológico de localização do poço, profundidade útil, tipo da rocha, tipo de aquífero, perfil litológico e perfil construtivo. A empresa Hydrolog, por sua vez, disponibilizou, com a permissão do seu cliente (CERB), todos os perfis que foram utilizados para as interpretações geofísicas feitas e dados digitalizados (LAS- Log Ascii Standard) do poço nomeados a própria conveniência: São João da Fortaleza - Projeto Tucano - Projeto Nordeste - Fase I - Cícero Dantas.

3.3 Parâmetros Hidrogeofísicos

3.3.1 Escolha do Poço e das Zonas de Estudo

A fim de se obter alguns importantes parâmetros hidrogeofísicos usados na caracterização de aquíferos, o poço São João da Fortaleza foi selecionado, e, dentro deste poço, quatro zonas foram definidas para o estudo. O perfil deste poço pode ser visto na Figura 3.1.

Figura 3.1: Perfil do poço tubular profundo São João da Fortaleza, contendo as curvas de raios gama (GR), potencial espontâneo (SP), normal curta (SN), indução profunda (DIR), sônico (DT) e cáliper (MCAL).

As zonas selecionadas para estudo constam na tabela a seguir, com suas respectivas espessuras:

Zona	Topo (m)	Base (m)	Espessura (m)
А	$163,\!07$	$225,\!55$	$62,\!48$
B1	$232,\!26$	268,22	$35,\!96$
B2	$268,\!38$	$292,\!30$	$23,\!92$
С	$313,\!94$	$337,\!87$	$23,\!93$

Tabela 3.1: Zoneamento do poço São João da Fortaleza

Este poço foi escolhido devido a algumas características que tornam possível o estudo dos parâmetros desejados. Tais características podem ser resumidas em três, listadas a seguir:

- O Δt é praticamente constante com a profundidade. Como foi visto no capítulo 2 do presente trabalho, o fato do Δt ser praticamente constante é resultado de uma porosidade que varia muito pouco.
- O $R_{\rm w}$ praticamente não varia. Como as camadas de folhelho que separam as zonas são muito pouco espessas é de se esperar que a salinidade não varie muito com a profundidade o que implica em $R_{\rm w}$ praticamente constante.
- O $V_{\rm SH}$ é baixo. Os pacotes escolhidos são arenitos que podem ser considerados limpos pelo fato de a curva de raios gama dos arenitos ser baixo, da ordem de 15-20 GAPI. Essa escolha se deve ao fato de que a argila por ser condutiva, afeta significativamente os valores de F, e como $R_{\rm w}$ é constante, pela equação 2.5, entende-se que o valor de $R_{\rm o}$ iria variar.

Deste modo, garantidas as três condições acima, a metodologia, aqui estabelecida, para a obtenção dos parâmetros que será descrita a seguir poderá ser utilizada em futuros estudos.

3.3.2 Obtenção dos Parâmetros Hidrogeofísicos

Apesar de muito utilizados na indústria de água subterrânea, os dados do perfil do potencial espontâneo, também disponibilizados pela Hydrolog, devido a algumas de suas limitações não foram utilizados no presente trabalho. Desse modo, os dados disponíveis no arquivo .las utilizados para os cálculos dos parâmetros foram os referentes as seguintes curvas perfis:

- Raios Gama GR
- Indução DIR
- Normal Curta SN

- Cáliper MCAL
- Sônico DT

De posse de tais dados, foram elaboradas planilhas no EXCELTM que ajudaram na obtenção dos valores dos parâmetros hidrogeofísicos em cada profundidade dos corpos arenosos estudados. Os parâmetros hidrogeofísicos calculados e as respectivas equações utilizadas para a obtenção dos mesmos foram:

- 1. VSH = Argilosidade $(V_{\rm SH})$ (equação 2.20);
- 2. PHIE = Porosidade efetiva obtida por meio das correções de compactação e argilosidade feitas na porosidade calculada com os dados do perfil sônico (equações 2.24 e 2.27).
- 3. Resistividade da água da formação (R_w) (equação 2.12);
- 4. Fator de formação (F) (equação 2.7)
- 5. Condutividade hidráulica (K) (equação 2.14);
- 6. Permeabilidade intrínseca (k) (equações 2.16 e 2.17);
- 7. Coeficiente de geometria porosa (m) (equações 2.26 e 2.18).

Para o cálculo dos parâmetros listados acima, algumas informações como a temperatura da formação (FT) e a resistividade da lama de formação $(R_{m@FT})$ foram lidas no cabeçalho do perfil. Para a escolha dos valores de GR_{max} , $GR_{min} \in \Delta t_{sh}$ foi necessária a avaliação de todo perfil. O GR_{min} foi determinado pelo menor valor encontrado, enquanto o GR_{max} e o Δt_{sh} foram escolhidos a partir de uma média, para não ocorrer erros referentes à anomalias.

A escolha das equações 2.16 e 2.17 baseou-se na disponibilidade dos parâmetros requeridos para o cálculo da permeabilidade intrínseca e na similaridade das regiões onde haviam sido previamente aplicadas com a região escolhida para esse estudo.

Após a obtenção dos parâmetros hidrogeofísicos, a linguagem de programação Python foi utilizada com a finalidade de relacionar tais parâmetros por meio da criação de gráficos que facilitaram a análise dos resultados.

3.4 Coeficiente de Determinação (R^2)

O coeficiente de determinação, R^2 , é uma medida de ajustamento de um modelo estatístico linear generalizado, como a regressão linear, em relação aos valores observados, indicando a proporção da variância observada na variável dependente que pode ser predita a partir da variável independente. O R^2 varia entre 0 e 1, indicando, em percentagem, o quanto o modelo consegue explicar os valores observados. Quanto maior o R^2 , mais explicativo é modelo, melhor ele se ajusta à amostra (Slinker e Glantz, 2008).

Por exemplo, se o R^2 de um modelo é 0,9214, isto significa que 92,14% da variável dependente consegue ser explicada pelos regressores presentes no modelo.

O R^2 foi o artifício utilizado para avaliar o grau de confiabilidade das relações obtidas. O programa utilizado para o cálculo do R^2 foi o EXCELTM.

Capítulo 4

Análise de Resultados e Discussões

Os parâmetros hidrogeofísicos calculados para quarenta profundidades de cada zona de estudo estão apresentados no Apêndice A.

A curva do potencial espontâneo (SP) mostrou-se inadequada para o uso quantitativo, possivelmente devido à resistividade do filtrado da lama ser aproximadamente igual à resistividade da água da formação.

Já o perfil cáliper (CAL), importante curva usado no controle de qualidade do poço, mostrou que nas zonas de estudo não ocorreram desabamentos significativos capazes de interferir nos resultados quantitativos. Todavia, considerando este perfil como um todo, houve desabamento visível apenas na zona de folhelho situada entre as profundidades 292m e 314m, o que dificilmente afetaria a qualidade dos dados obtidos para as zonas de estudo.

Dos quatro dados de poços cedidos escolheu-se o poço mais central e de melhores curvas características para análise no presente trabalho, que foi o poço tubular profundo São João da Fortaleza.

4.1 Interpretação dos Valores dos Parâmetros Hidrogeofísicos

4.1.1 Volume de Folhelho (VSH)

O parâmetro VSH é resultado dos dados obtidos com o perfil de raios gama, um dos melhores indicadores de argilosidade, em suas relações não lineares. Neste trabalho usou-se a equação de Stieber (eq. 2.20).

Analisando-se a Tabela 4.1, que apresenta os valores dos parâmetros hidrogeofísicos para as quatro zonas, e levando-se em consideração a classificação proposta por Remacre et al. (1989), todas as zonas são formadas por arenitos limpos, sendo que, dentre elas, a

Parâmetros	Zonas									
hidrogeofísicos	Α	B1	$\mathbf{B2}$	С						
VSH (%)	5,3	$11,\!05$	$7,\!37$	10,25						
PHIE $(\%)$	$23,\!49$	21,90	22,79	23,30						
$R_{\rm w}$ DIR (ohm.m)	12,27	8,98	16, 18	9,98						
$R_{\rm w} { m SN} \ ({ m ohm.m})$	9,02	8,24	13, 13	8,38						
FDIR	7,83	$5,\!15$	8,84	7,31						
FSN	7,89	$6,\!46$	9,76	7,39						
$k \ (mD)$	1482	1117	1276	1337						
$k \ (10^{-12} \ { m m}^2)$	$1,\!463$	1,102	$1,\!259$	1,320						
$K~({ m m/dia})$	$1,\!60$	$1,\!31$	$1,\!44$	$1,\!55$						
m Archie	$1,\!535$	1,300	$1,\!300$	1,535						
m Raiga	$1,\!671$	$1,\!682$	$1,\!679$	$1,\!680$						

Tabela 4.1: Caracterização hidrogeofísica das zonas do poço São João da Fortaleza

composta pelo arenito mais limpo é a zona A, cujo VSH é igual a 5,3%, enquanto a maior argilosidade é encontrada na zona B1 com o valor igual a 11,05%.

4.1.2 Porosidade Efetiva (PHIE)

A porosidade efetiva é um importante parâmetro hidrogeofísico utilizado na caracterização de reservatórios, pois, quanto mais poroso é um reservatório, mais fluido poderá ser armazenado. A depender dos valores de porosidade calculados, uma área pode ou não ser utilizada em prospecções futuras.

Levando-se em consideração a classificação proposta por Ursin e Zolotukhin (1997) e observando as tabelas dos parâmetros, conclui-se que, como todas as porosidades estão entre 20% e 25%, todas as quatro zonas deste poço podem classificadas como muito boas. Dentre elas, a melhor porosidade, ou seja, a que possui maior valor númerico, é a correspondente à zona A, igual à 23,49%, enquanto a menor delas pertence à zona B1, igual à 21,90%.

4.1.3 Resistividade da Água da Formação (R_w)

A resistividade da água da formação (R_w) está diretamente ligada à salinidade da água subterrânea. Desse modo, é possível inferir sobre a qualidade da água contida nas zonas por meio de uma análise dos valores de R_w (Nery, 1996).

Altos valores de $R_{\rm w}$ são, geralmente, interpretados como provenientes de águas pouco salinizadas, adequadas para o consumo humano. Uma água é dita boa para consumo humano quando os valores de $R_{\rm w}$ são maiores que 20 ohm.m (Graça, 2013).

No entanto, segundo Nery (2013) valores relativamente baixos calculados para $R_{\rm w}$ podem não corresponder necessariamente a águas mais salgadas e sim à presença de argilominerais, pelo fato de apresentaram uma maior condutância superficial devido ao fenômeno de potencial de membrana, a depender do tipo de argilomineral.

Neste trabalho, a resistividade da água da formação foi calculada por meio dos dados dos perfis de normal curta (R_w SN) e de indução (R_w DIR). Valores médios para cada zona estão na Tabela 4.1. Pela tabela, nota-se que nenhuma das resistividades da água da formação supera 20 ohm.m, portanto, poderiam não ser consideradas boas para o consumo humano, exceto pelo que foi dito acima.

Uma outra característica dos valores mostrados é o fato dos mesmos serem menores para a zona B1 e maiores para a zona A. Como as zonas estão no mesmo poço e são relativamente próximas é dedutível que a água da formação seja a mesma para todas elas, de modo que a diferença entre os valores de R_w não indicam a variação da qualidade da água, sendo atribuída aos diferentes tipos e volumes de folhelhos presentes em cada zona.

Outra característica dos valores de $R_{\rm w}$ é o fato de serem próximos ainda que se utilize ferramentas que teoricamente possuem alcances distintos na formação. É provável que esse fenômeno ocorra devido à resolução da ferramenta SN possivelmente ter ultrapassado seu valor teórico de investigação radial, ultrapassando, desse modo, a referida zona lavada/invadida do poço, razão pela qual Alger et al. (1966) indica o uso da normal curta para quantificações de poços em tais situações, desde que as ferramentas tenham qualidade suficiente para tal, quando se relaciona diâmetro da ferramenta e do poço.

4.1.4 Fator de Formação (F)

O fator de formação (F), assim como o $R_{\rm w}$, foi calculado para os dados obtidos por meio das ferramentas DIR e SN. Como seus valores são dependentes dos valores de $R_{\rm w}$, como já mostrado no Capítulo 2, infere-se que sofreram também a influência do VSH sobre $R_{\rm o}$.

Os valores encontrados para os fatores de formação para as duas ferramentas indicam que as quatro zonas são pouco cimentadas (Jackson et al., 1978).

4.1.5 Permeabilidade Intrínseca (k)

A permeabilidade intrínseca (k) de um reservatório é uma das propriedades mais importantes para determinar se uma área será ou não descartada no que diz respeito à sua explotação.

Tendo em vista a classificação proposta por Jorgensen (1991), todas as zonas possuem valores de permeabilidade que fazem parte das rochas consideradas permeáveis. Sendo a

zona A a mais permeável, possuindo valor de (k) igual a 1482 mD (ou 1,463×10⁻¹² m²), e a zona B a menos permeável, com (k) igual a 1117 mD (ou 1,102×10⁻¹² m²). Nota-se por meio desses valores que a permeabilidade intrínseca é afetada tanto pelo VSH como pela porosidade efetiva, sendo inversamente proporcional ao primeiro e diretamente proporcional ao segundo.

4.1.6 Condutividade Hidráulica (K)

A condutividade hidráulica (K) é também um parâmetro importante na qualificação de um reservatório. A principal diferença entre K e k é que a primeira depende não só da matriz das rochas mas também de características do fluido que nela está armazenado, como a viscosidade (μ) e a densidade (ρ) .

Como o único fluido presente no poço é a água e as zonas estão próximas entre si, as propriedades $\mu \in \rho$ variam muito pouco. Desse modo, quando se compara as quatro zonas, a condutividade hidráulica pode ser considerada como sendo função, de um modo geral, das características da matriz.

Jorgensen (1991) propôs uma classificação para as rochas de acordo com os valores de condutividade hidráulica segundo a qual as quatro zonas são classificadas como permeáveis.

Apesar dos valores serem próximos, a zona A apresenta o maior valor para K, 1,60 m/dia, enquanto B1 apresenta o menor valor com o K igual a 1,31 m/dia. A diferença pode ser explicada pelos mesmos motivos mencionados para a permeabilidade intrínseca.

4.1.7 Coeficiente de Geometria Porosa (m)

O coeficiente de geometria porosa (m) está relacionado à geometria dos grãos e foi calculado neste trabalho por meio de relações estabelecidas por Archie (1942) e por Raiga-Clemenceau (1977). Os valores médios encontrados para cada uma delas estão apresentados na Tabela 4.1, nas quais foram nomeados de m Archie e m Raiga.

Os valores encontrados para m nas zonas de estudo indicam que os grãos são arredondados a sub-arredondados como os que ocorrem em ambientes flúvio-lacustrinos (Jackson et al., 1978).

Dentre as quatro zonas nota-se que os valores de m das zonas A e C são bem semelhantes entre si mas se distanciam um pouco dos valores de m calculados para a zona B1, que por sua vez são similares aos valores encontrados para a zona B2, assim como o ocorrido com os demais parâmetros.

Gráficos	Equação da reta de tendência linear	\mathbf{R}^2
PHIE x k	y = 203,27x - 3345,4	$0,\!9136$
$R_{\rm w}$ SN x F SN	y = 0,569x + 2,36	0,9002
$R_{\rm w}$ DIR x FDIR	y = 0,4206x + 2,3064	0,7541
FDIR x k	y = 62,272x + 849,83	0,4113
$FSN \ge k$	y = 34,146x + 1034,4	0,0984
$K \ge k$	y = 1136, 6x - 375, 32	0,9400
$\mu \ge K$	y = 674, 4x + 0,9727	0,0126

Tabela 4.2: Equações da reta de tendência linear e coeficiente de determinação para as correlações entre os parâmetros hidrogeofísicos

4.2 Correlações entre os Parâmetros Hidrogeofísicos

A fim de verificar quantitativamente possíveis relações entre os parâmetros hidrogeofísicos das quatro zonas, foram feitas sete correlações para cada trio de parâmetros devidamente selecionados. Para cada correlação foi ajustada uma equação da reta de tendência linear (y = f(x)) para os dois parâmetros correspondentes aos eixos x e y e calculado um coeficiente de determinação (R^2) , ambos obtidos utilizando o programa EXCELTM.

Uma figura cross-plot com os três parâmetros, cada um em um eixo, x, y e z, sendo este último apresentado em escala de cores, foi gerada utilizando algoritmo em linguagem Python.

Na Tabela 4.2 são mostrados as equações das retas de tendência linear e os coeficientes de determinação para as sete correlações estabelecidas.

4.2.1 PHIE x k x VSH

O coeficiente de determinação para PHIE e k mostrado na Tabela 4.2 é igual a 0,9136, o que indica uma elevada dependência linear entre as variáveis. Por sua vez, a Figura 4.1, que além de k e PHIE leva em conta também a argilosidade (VSH), indica que o aumento desta última está relacionado à diminuição de k e PHIE. Isto ocorre porque a medida que aumenta a proporção de argilominerais nas rochas eles passam a ocupar os espaços vazios diminuindo a porosidade das mesmas e, consequentemente, dificultando a passagem da água, diminuindo os valores de k.

Figura 4.1: Cross-plot de três eixos dos valores de PHIE, k e VSH com os valores de VSH na escala de cores.

4.2.2 $FSN \ge k \ge VSH$

O valor de R^2 encontrado para a correlação FSN x k, mostrado na Tabela 4.2, é igual a 0,0984, e mostra uma baixa interdependência entre a permeabilidade intrínseca e o fator de formação. Considerando que o fator de formação resulta da relação estabelecida na equação 2.7, uma vez que as quatro zonas de estudo tenham uma mesma qualidade de água da formação, existe alguma correlação entre $k \in R_0$ quando o VSH diminui, como é mostrado na Figura 4.2.

4.2.3 $FDIR \ge k \ge VSH$

A Tabela 4.2 mostra uma baixa correlação com R^2 igual a 0,4113 entre os valores de k e FDIR. Pelas mesmas considerações apresentadas na subsecção 4.2.2, por meio da Figura 4.3 nota-se que existe alguma correlação entre $k \in R_0$ quando VSH diminui.

4.2.4 $R_{w}SN \ge FSN \ge VSH$

O R^2 obtido para a relação $R_{\rm w}$ SN X FSN foi igual a 0,9002 e é mostrado na Tabela 4.2. Esse valor demonstra uma elevada dependência de FSN com $R_{\rm w}$ SN confirmando do ponto de vista quantitativo o esperado na análise qualitativa feita anteriormente. Observando a Figura 4.4 nota-se ainda a influência do VSH nos valores dos outros dois parâmetros o que havia sido previsto em análises anteriores.

Figura 4.2: Cross-plot de três eixos dos valores de FSN, $k \in VSH$ com os valores de VSH na escala de cores.

Figura 4.3: Cross-plot de três eixos dos valores de FDIR, k e VSH com os valores de VSH na escala de cores.

4.2.5 R_w DIR x FDIR x VSH

Na Tabela 4.2 o valor de R^2 mostrado para a relação R_w DIR X FDIR é igual a 0,7541 o que mostra a dependência entre R_w e FDIR para a ferramenta de indução. A Figura 4.5 mostra a influência de VSH sobre os demais parâmetros.

Figura 4.4: Cross-plot de três eixos dos valores de $R_{\rm w}$ SN, FSN e VSH com os valores de VSH na escala de cores.

Figura 4.5: Cross-plot de três eixos dos valores de $R_{\rm w}$ DIR, FDIR e VSH com os valores de VSH na escala de cores.

4.2.6 $K \ge k \ge \mu$

Espera-se a partir da equação 2.14 que haja elevada correlação entre os valores de $k \in K$ o que foi confirmado pelo elevado valor do coeficiente de determinação R^2 obtido para a mesma, sendo igual a 0,94. Na Figura 4.6, a viscosidade, (μ), que aparece no eixo z representado em cor com o nome "mi", não demonstra uma possível dependência entre K, $k \in \mu$.

Figura 4.6: Cross-plot de três eixos dos valores de K, $k \in \mu$ com os valores de μ na escala de cores.

4.2.7 $\mu \mathbf{x} K \mathbf{x} k$

Para melhor análise da viscosidade, foi determinado o coeficiente de determinação R^2 entre μ e K que, teoricamente, pela equação 2.14, possuem dependência linear. No entanto, o valor obtido para R^2 foi muito baixo, sendo igual a 0,0126 como mostrado na Tabela 4.2. As razões para este fenômeno foram apresentadas na subseção 4.1.6. Por meio da Figura 4.7 percebe-se mais uma vez a elevada dependência entre $K \in k$.

Figura 4.7: Cross-plot de três eixos dos valores de $\mu,~K$ e k com os valores de k na escala de cores.

Capítulo 5

Conclusões e Recomendações

Este trabalho teve seu objetivo primário atingido uma vez que ele se propunha a quantificar parâmetros hidrogeofísicos bem como qualificar as quatro zonas de estudo no poço tubular profundo, denominado São João da Fortaleza, localizado no município de Cícero Dantas na bacia sedimentar do Tucano.

Foi possível, por meio das médias dos valores dos parâmetros hidrogeofísicos calculados, a classificação do poço São João da Fortaleza que recebeu as seguintes qualificações:

- O poço é formado por arenitos relativamente limpos com argilosidade variando 5,3% a 11,05%;
- 2. O reservatório apresenta porosidade boa variando de 20% a 25%;
- 3. A água da formação é própria para consumo humano (Matos, 2013);
- 4. As rochas que formam o reservatório são consideradas permeáveis pela classificação de Jorgensen (1991) adotada para dois parâmetros ($k \in K$).

Desse modo, a análise dos dados obtidos na perfilagem geofísica de poços indica que se trata de um bom reservatório que pode ser usado na explotação de água subterrânea, podendo inclusive ser utilizada para o consumo humano.

Por meio da comparação dos parâmetros obtidos para as quatro zonas pôde-se concluir que:

- 1. As zonas A e C possuem valores dos parâmetros muito próximos e estes valores revelam que são as zonas limpas, porosas e permeáveis do poço São João da Fortaleza;
- As zonas B1 e B2 compartilham também valores de parâmetros muito próximos entre si, no entanto, tais valores revelam que essas zonas são menos limpas, porosas e permeáveis do que as demais.

A variação conjunta dos valores de VSH, PHIE, $k \in K$ ora para mais, ora para menos, confirmam a validades das relações teóricas presentes na bibliografia para o poço São João da Fortaleza.

Finalmente, confirma-se que a perfilagem geofísica de poços se trata de uma excelente ferramenta na quantificação de parâmetros hidrogeofísicos e consequente qualificação de reservatórios.

Como essas águas possuem resistividade inferior a 20 ohm.m provavelmente devido à condutância superficial promovida pelas argilas, recomenda-se que em próximos trabalhos seja feita uma análise mais detalhada dos argilominerais presentes na formação com a utilização de testemunhos.

Agradecimentos

Agradeço, primeiramente e principalmente, aos meus pais, Andréia e João César por terem me presenteado com o bem mais importante, a vida, e por não se darem por satisfeitos e terem me presenteado mais uma vez aos dois anos de idade com um presente chamado Cesinha, meu irmão. Agradeço às minhas avós Nina e Angelina que cada uma ao seu modo é uma lição de generosidade. Às minhas primas Camila e Jamille as quais as vidas sempre me inspiraram. À minha tia Vânia e às minhas primas Ena e Bel que me apoiaram em etapas fundamentais da minha vida escolar. Agradeço ao meu tio Vânio pelo incentivo e inspiração, visto que de uma família tão grande só com ele posso colocar os papos físicos e matemáticos em dia. Agradeço a todos os meus outros tios e primos, em especial a Radharane que junto com Mila me acolheu quando precisei.

À minha amiga de infância Maria Gabriela e aos seus pais, Dinha e tio Marcelo, por sempre me tratarem como alguém da família. À família Rocha Rosa que esteve ao meu lado em muitos momentos de minha trajetória. Às minhas bichinhas e companheiras Luma e Tufinha.

Agradeço também aos meus amigos e colegas da faculdade pelos estudos intensos e por fazerem esse curso parecer mais leve: Elis, Leo, Beti, Dan, Jú, Lai, Paulinha e Bia. Aos calouros que desejo muita sorte ainda que não precisem dada as suas tamanhas competências: Carol e Lucas Bitencourt. Agradeço aos meus veteranos que se tornaram verdadeiros amigos: Ítalo, Uilli e Alex.

Agradeço aos professores componentes da banca examinadora, Marco Antônio Peixinho e Susana Cavalcanti, pela atenção e disponibilidade. À CERB e à Hydrolog Serviços de Perfilagem Ltda., por cederem os perfis aqui apresentados.

Aos três professores da Universidade Federal da Bahia dos quais sou fã: Hédison Sato, Newton Barros e finalmente, ao professor Geraldo Girão Nery pela paciência, valiosos ensinamentos e principalmente por mostrar a todos que trabalhar com o que se gosta será sempre uma diversão!

Muito obrigada!

Apêndice A

Planilha de Cálculos Interpretativos

PARÂMETROS		Intervalo	P.Final AGR		TSup GG(°F/m)		Rm	DTm	DTf	DTsh	
PA	RAMETR	US	163/225	365	3	80	0.04	10	56	200	140
ZONA	ZONA Prof FT		GR	IGR	VSHGR	Rm@FT	DIR	RSN	DT	PHIS	PHISC
	162.07	96 50	46.70	0.2264	0 1 1 4 5	0.40	52.01	24.00	110.26	0.29	0.0606
A	164.44	86.58	40.72	0.3304	0.1445	9.40	110 12	34.00	108.00	0.30	0.2090
Â	165.81	86.63	25.76	0.0787	0.0337	9.39	132.29	55 55	113 22	0.37	0.2029
A	167.18	86.69	24 71	0.0659	0.0230	9.38	129.31	57.68	109.96	0.40	0.2677
A	168.71	86.75	23.03	0.0452	0.0155	9.38	122.42	59.16	108.75	0.37	0.2616
A	170.08	86.80	22.91	0.0437	0.0150	9.37	158.56	60.70	108.64	0.37	0.2611
Α	171.60	86.86	23.72	0.0537	0.0185	9.37	139.35	62.59	111.61	0.39	0.2758
Α	173.13	86.93	21.24	0.0232	0.0079	9.36	147.46	64.32	107.28	0.36	0.2544
Α	174.50	86.98	22.55	0.0393	0.0135	9.36	140.79	64.52	106.53	0.35	0.2507
Α	175.87	87.03	25.16	0.0714	0.0250	9.35	136.47	64.56	103.59	0.33	0.2361
Α	177.39	87.10	24.12	0.0586	0.0203	9.35	126.17	61.02	104.13	0.33	0.2388
Α	178.77	87.15	39.65	0.2495	0.0998	9.34	65.87	43.41	107.52	0.36	0.2556
Α	180.44	87.22	26.41	0.0868	0.0307	9.34	39.63	34.75	111.80	0.39	0.2768
Α	185.78	87.43	40.05	0.2544	0.1021	9.32	69.35	39.76	110.86	0.38	0.2721
Α	187.15	87.49	36.67	0.2128	0.0827	9.31	84.72	48.01	113.26	0.40	0.2840
Α	188.52	87.54	24.17	0.0592	0.0205	9.31	115.73	56.00	111.70	0.39	0.2763
A	189.89	87.60	21.84	0.0306	0.0104	9.30	131.83	56.53	111.09	0.38	0.2733
A	191.41	87.66	42.10	0.2796	0.1145	9.30	98.72	52.34	108.31	0.36	0.2595
A	192.79	87.71	28.91	0.1175	0.0425	9.29	125.91	59.25	109.98	0.37	0.2678
A	194.16	87.77	27.20	0.0965	0.0344	9.29	146.06	61.55	106.68	0.35	0.2514
A	195.68	87.83	31.00	0.1439	0.0531	9.28	96.80	52.05	112.05	0.39	0.2780
~	100.00	97.06	27.27	0.1324	0.0464	9.20	125.03	64.24	101.44	0.32	0.2234
A	200.41	88.02	20.40	0.0973	0.0347	9.21	128.80	64.34	104.94	0.34	0.2420
<u> </u>	200.41	88.07	29.49	0.1240	0.0433	9.26	147.82	65 10	108.00	0.36	0.2000
A	203 15	88.13	34 10	0.1210	0.0687	9.26	138.26	63.04	108.89	0.37	0.2623
A	204 67	88 19	25.13	0.0710	0.0248	9.25	167 74	61 55	108 90	0.37	0 2624
A	206.04	88.24	27.74	0.1031	0.0369	9.25	58.24	44.74	114.23	0.40	0.2888
Α	209.40	88.38	32.46	0.1611	0.0602	9.24	120.43	59.72	109.21	0.37	0.2639
Α	210.77	88.43	35.37	0.1969	0.0756	9.23	86.86	54.44	106.33	0.35	0.2497
Α	212.29	88.49	34.61	0.1876	0.0715	9.23	99.39	57.11	102.63	0.32	0.2313
Α	213.66	88.55	33.19	0.1701	0.0639	9.22	128.75	62.36	104.80	0.34	0.2421
Α	215.04	88.60	37.98	0.2290	0.0901	9.22	111.23	61.23	105.95	0.35	0.2478
Α	216.56	88.66	28.23	0.1091	0.0392	9.21	106.12	58.97	102.53	0.32	0.2308
Α	217.93	88.72	33.82	0.1778	0.0672	9.21	105.71	55.12	107.24	0.36	0.2542
Α	219.30	88.77	29.81	0.1285	0.0469	9.20	104.20	55.25	106.34	0.35	0.2497
A	220.83	88.83	28.94	0.1178	0.0426	9.20	89.89	49.44	109.34	0.37	0.2646
Α	222.20	88.89	41.21	0.2687	0.1091	9.19	54.63	37.53	106.67	0.35	0.2513
A	223.57	88.94	44.71	0.3118	0.1312	9.19	48.48	33.09	108.88	0.37	0.2623
A	225.55	89.02	45.16	0.3172	0.1341	9.18	43.69	30.52	106.97	0.35	0.2528

Figura A.1: Planilha de cálculos interpretativos referentes à zona A - parte um.

PARÂMETROS		PHIsh	PHIshCORR	а	m calc	RwSNcorr FT	SAL RwSNcorr	aRw	RwDIR FT
PARAM	EIROS	0.583	0.417	0.863	1.535	10.462	460ppm NaCl	9.03	14.224
ZONA	Prof	PHIE	CAL	RSN/Rm	RSNcorr	DIR	RwA SNcorr	RwA DIR	F=SNcorr/RwASNcorr
A	163.07	0.2094	12.23	3.62	51.01	53.81	4.63	4.88	4.88
Α	164.44	0.2463	12.23	5.18	72.94	110.12	8.49	12.82	6.97
Α	165.81	0.2723	12.39	5.92	83.33	132.29	11.31	17.96	7.96
Α	167.18	0.2581	12.35	6.15	86.52	129.31	10.82	16.17	8.27
Α	168.71	0.2552	12.23	6.31	88.74	122.42	10.90	15.04	8.48
Α	170.08	0.2548	12.25	6.48	91.05	158.56	11.17	19.45	8.70
Α	171.60	0.2681	12.20	6.68	93.89	139.35	12.45	18.47	8.97
Α	173.13	0.2511	12.17	6.87	96.48	147.46	11.57	17.68	9.22
Α	174.50	0.2450	12.20	6.90	96.78	140.79	11.18	16.26	9.25
Α	175.87	0.2256	12.20	6.90	96.84	136.47	9.85	13.89	9.26
Α	177.39	0.2303	12.21	6.53	91.52	126.17	9.61	13.25	8.75
Α	178.77	0.2140	12.26	4.65	65.11	65.87	6.11	6.18	6.22
Α	180.44	0.2640	12.07	3.72	52.13	39.63	6.75	5.13	4.98
Α	185.78	0.2296	12.14	4.27	59.65	69.35	6.23	7.25	5.70
Α	187.15	0.2496	12.17	5.16	72.01	84.72	8.55	10.06	6.88
Α	188.52	0.2678	12.14	6.02	84.00	115.73	11.11	15.31	8.03
Α	189.89	0.2689	12.53	6.08	84.80	131.83	11.30	17.56	8.11
Α	191.41	0.2118	12.12	5.63	78.52	98.72	7.25	9.11	7.50
A	192.79	0.2501	12.10	6.37	88.87	125.91	10.59	15.00	8.49
Α	194.16	0.2371	11.81	6.63	92.32	146.06	10.13	16.03	8.82
Α	195.68	0.2559	11.71	5.67	78.97	96.80	9.75	11.95	7.55
Α	197.51	0.2052	11.68	6.36	88.45	123.83	7.78	10.89	8.45
A	198.88	0.2283	11.68	6.94	96.51	155.34	10.00	16.09	9.23
Α	200.41	0.2444	11.74	6.95	96.55	128.80	11.11	14.81	9.23
A	201.78	0.2408	11.74	7.03	97.64	147.82	10.98	16.62	9.33
A	203.15	0.2337	11.76	6.81	94.56	138.26	10.15	14.84	9.04
A	204.67	0.2521	11.76	6.65	92.33	167.74	11.13	20.23	8.83
A	206.04	0.2734	11.77	4.84	67.10	58.24	9.17	7.96	6.41
A	209.40	0.2389	11.70	6.46	89.58	120.43	9.95	13.37	8.56
A	210.77	0.2182	11./1	5.90	81.66	86.86	7.89	8.39	7.80
A	212.29	0.2015	11.6/	6.19	85.67	99.39	7.33	8.50	8.19
A	213.66	0.2154	11./1	6.76	93.54	128.75	8.86	12.20	8.94
A	215.04	0.2102	11.77	6.64	91.84	111.23	8.38	10.15	8.78
A	216.56	0.2145	11.65	6.40	88.45	106.12	8.32	9.99	8.45
A	217.93	0.2261	11.65	5.99	82.68	105./1	8.44	10.79	7.90
A	219.30	0.2302	11.66	6.00	82.87	104.20	8.69	10.93	7.92
A	220.83	0.2468	11.66	5.37	/4.16	89.89	8.66	10.50	7.09
A	222.20	0.2059	11.6/	4.08	56.29	54.63	4.98	4.83	5.38
A	223.57	0.2077	11.0/	3.60	49.64	48.48	4.45	4.34	4./4
A	ZZ0.00	0.1909	11./1	3.32	40.78	43.09	3.18	3.01	4.38

Figura A.2: Planilha de cálculos interpretativos referentes à zona A - parte dois.

ZONA	Prof	FDIR	a	F*=a/PHle^m	m A	m R	kJ (mD)	RE	kC (mD)	kM (mD)	kM (m²)	μ (Pa.s)	K (m/dia)
A	163.07	3.78	0.442	9.51	1.535	1.699	702	0.168	471	586	5.80E-13	0.000787	0.62
Α	164.44	7.74	0.812	7.41	1.535	1.663	1465	0.122	1917	1691	1.67E-12	0.000786	1.80
Α	165.81	9.30	1.081	6.36	1.535	1.650	2337	0.125	2690	2513	2.49E-12	0.000786	2.68
Α	167.18	9.09	1.034	6.90	1.535	1.655	1819	0.117	2545	2182	2.16E-12	0.000785	2.33
Α	168.71	8.61	1.042	7.02	1.535	1.654	1725	0.111	2712	2219	2.20E-12	0.000785	2.37
Α	170.08	11.15	1.067	7.04	1.535	1.654	1715	0.111	2722	2219	2.20E-12	0.000784	2.37
Α	171.60	9.80	1.190	6.51	1.535	1.650	2173	0.118	2883	2528	2.50E-12	0.000784	2.70
Α	173.13	10.37	1.105	7.20	1.535	1.654	1601	0.105	2886	2244	2.22E-12	0.000783	2.40
Α	174.50	9.90	1.068	7.47	1.535	1.657	1431	0.106	2572	2001	1.98E-12	0.000782	2.14
Α	175.87	9.59	0.942	8.48	1.535	1.668	982	0.105	1890	1436	1.42E-12	0.000782	1.54
Α	177.39	8.87	0.918	8.22	1.535	1.665	1077	0.104	2089	1583	1.57E-12	0.000781	1.70
Α	178.77	4.63	0.584	9.20	1.535	1.690	773	0.144	744	758	7.51E-13	0.000781	0.81
Α	180.44	2.79	0.645	6.66	1.535	1.654	2022	0.124	2446	2234	2.21E-12	0.000780	2.40
A	185.78	4.88	0.596	8.26	1.535	1.681	1062	0.151	872	967	9.57E-13	0.000778	1.04
Α	187.15	5.96	0.818	7.26	1.535	1.668	1557	0.148	1285	1421	1.41E-12	0.000777	1.53
Α	188.52	8.14	1.062	6.52	1.535	1.651	2160	0.119	2813	2486	2.46E-12	0.000777	2.68
Α	189.89	9.27	1.080	6.48	1.535	1.648	2205	0.114	3182	2694	2.67E-12	0.000776	2.91
Α	191.41	6.94	0.693	9.35	1.535	1.694	738	0.152	631	684	6.77E-13	0.000776	0.74
Α	192.79	8.85	1.012	7.24	1.535	1.662	1571	0.125	1923	1747	1.73E-12	0.000775	1.89
Α	194.16	10.27	0.969	7.86	1.535	1.665	1230	0.115	1875	1553	1.54E-12	0.000774	1.68
Α	195.68	6.81	0.932	6.99	1.535	1.661	1749	0.133	1812	1781	1.76E-12	0.000774	1.93
Α	197.51	8.71	0.744	9.81	1.535	1.684	642	0.110	1154	898	8.89E-13	0.000773	0.97
Α	198.88	10.92	0.956	8.33	1.535	1.669	1036	0.112	1723	1380	1.37E-12	0.000773	1.50
Α	200.41	9.06	1.061	7.50	1.535	1.664	1414	0.124	1775	1595	1.58E-12	0.000772	1.73
Α	201.78	10.39	1.049	7.67	1.535	1.666	1321	0.122	1742	1532	1.52E-12	0.000771	1.66
Α	203.15	9.72	0.970	8.04	1.535	1.674	1152	0.134	1255	1203	1.19E-12	0.000771	1.31
Α	204.67	11.79	1.064	7.15	1.535	1.657	1630	0.115	2376	2003	1.98E-12	0.000770	2.18
Α	206.04	4.09	0.876	6.31	1.535	1.651	2385	0.131	2464	2424	2.40E-12	0.000770	2.64
Α	209.40	8.47	0.951	7.77	1.535	1.670	1272	0.131	1441	1357	1.34E-12	0.000768	1.48
Α	210.77	6.11	0.754	8.93	1.535	1.683	843	0.131	991	917	9.08E-13	0.000768	1.00
Α	212.29	6.99	0.700	10.09	1.535	1.692	592	0.122	850	721	7.13E-13	0.000767	0.79
Α	213.66	9.05	0.847	9.11	1.535	1.682	797	0.123	1086	941	9.32E-13	0.000767	1.03
Α	215.04	7.82	0.801	9.45	1.535	1.690	714	0.137	780	747	7.40E-13	0.000766	0.82
Α	216.56	7.46	0.796	9.17	1.535	1.677	781	0.109	1423	1102	1.09E-12	0.000765	1.21
Α	217.93	7.43	0.807	8.45	1.535	1.677	992	0.130	1178	1085	1.07E-12	0.000765	1.19
Α	219.30	7.33	0.831	8.23	1.535	1.671	1075	0.119	1527	1301	1.29E-12	0.000764	1.43
Α	220.83	6.32	0.828	7.39	1.535	1.663	1480	0.124	1867	1674	1.66E-12	0.000764	1.84
Α	222.20	3.84	0.476	9.76	1.535	1.697	650	0.146	615	632	6.26E-13	0.000763	0.69
Α	223.57	3.41	0.425	9.63	1.535	1.699	676	0.160	516	596	5.90E-13	0.000763	0.65
Α	225.55	3.07	0.361	10.45	1.535	1.707	534	0.157	434	484	4.79E-13	0.000762	0.53

Figura A.3: Planilha de cálculos interpretativos referentes à zona A - parte três.

	- 1		Intervalo	P.Final	AGR	TSup	GG(°F/m)	Rm	DTm	DTf	DTsh
PA	RAMETR	OS	232/268	365	3	80	0.04	10	56	200	140
ZONA	Prof	FT	GR	IGR	VSHGR	Rm@FT	DIR	RSN	DT	PHIS	PHISC
B1	232.26	89.29	39.30	0.3079	0.1291	9.16	73.86	41.54	117.94	0.43	0.3072
B1	233.02	89.32	43.96	0.3978	0.1805	9.16	66.05	46.49	118.31	0.43	0.3091
B1	233.93	89.36	29.34	0.1152	0.0416	9.16	93.86	52.83	111.35	0.38	0.2746
B1	234.85	89.39	24.52	0.0220	0.0075	9.15	107.37	54.93	109.36	0.37	0.2647
B1	235.76	89.43	26.77	0.0654	0.0228	9.15	76.70	45.32	112.92	0.40	0.2823
B1	236.68	89.47	40.55	0.3320	0.1421	9.15	55.35	36.19	113.14	0.40	0.2834
B1	237.59	89.50	31.96	0.1658	0.0621	9.14	47.38	32.94	113.79	0.40	0.2867
B1	238.51	89.54	42.95	0.3784	0.1687	9.14	42.74	30.20	111.54	0.39	0.2755
B1	239.42	89.58	39.12	0.3043	0.1273	9.14	47.43	32.14	110.86	0.38	0.2721
B1	240.33	89.61	33.58	0.1972	0.0757	9.13	57.19	35.19	108.98	0.37	0.2628
B1	241.25	89.65	33.73	0.2000	0.0769	9.13	72.52	38.56	110.01	0.38	0.2679
B1	242.16	89.69	39.71	0.3158	0.1333	9.13	58.80	35.67	108.95	0.37	0.2626
B1	243.08	89.72	35.61	0.2365	0.0936	9.13	51.68	34.10	104.80	0.34	0.2421
B1	243.84	89.75	38.92	0.3004	0.1252	9.12	53.60	34.80	104.50	0.34	0.2406
B1	244.70	89.79	30.31	0.2500	0.1000	9.12	00.00	39.19	107.64	0.30	0.2071
B1	240.07	89.83	30.34	0.2043	0.1021	9.12	51.00	38.08	107.01	0.30	0.2000
B1 B1	240.08	89.80	30.09	0.2999	0.1249	9.11	01.90 65.56	30.02	109.29	0.37	0.2043
DI D1	247.00	09.90	33.23	0.1905	0.0727	9.11	74.62	J9.4Z	109.03	0.37	0.2000
DI D1	240.41	09.94	31.41	0.2724	0.1110	9.11	74.03 92.01	45.00	100.05	0.30	0.2002
D1 21	249.33	09.97	30.07	0.2029	0.0702	9.11	02.01 83.56	43.22	109.00	0.37	0.2032
B1	250.24	90.01	32.12	0.1009	0.0033	9.10	62.30	30.87	111 12	0.37	0.2029
B1	252.07	90.03	46.48	0.4466	0.0702	9.10	54.61	36.01	100.45	0.30	0.2651
B1	252.07	90.12	34 12	0.1100	0.0804	9.09	67.43	41.08	109.57	0.37	0.2657
B1	253.90	90.12	31.94	0 1654	0.0620	9.09	63 79	39.91	105.89	0.35	0 2475
B1	254 81	90.19	32 73	0 1808	0.0685	9.09	66 76	40.07	107.39	0.36	0 2549
B1	255.57	90.22	30.35	0.1347	0.0493	9.08	64.48	40.52	106.95	0.35	0.2528
B1	256.49	90.26	35.92	0.2424	0.0964	9.08	62.91	39.56	106.24	0.35	0.2492
B1	257.40	90.30	36.76	0.2586	0.1042	9.08	57.83	38.06	106.80	0.35	0.2520
B1	258.32	90.33	35.16	0.2278	0.0895	9.08	62.31	38.27	107.89	0.36	0.2574
B1	259.23	90.37	38.55	0.2933	0.1215	9.07	44.69	33.54	111.05	0.38	0.2731
B1	260.15	90.41	37.25	0.2682	0.1089	9.07	51.73	35.82	107.37	0.36	0.2548
B1	261.06	90.44	30.52	0.1380	0.0506	9.07	69.77	40.38	110.94	0.38	0.2725
B1	261.98	90.48	39.83	0.3180	0.1345	9.06	61.94	38.29	110.59	0.38	0.2708
B1	262.89	90.52	31.29	0.1528	0.0567	9.06	59.75	37.58	108.19	0.36	0.2589
B1	263.80	90.55	37.83	0.2794	0.1144	9.06	64.88	38.71	108.18	0.36	0.2588
B1	264.72	90.59	38.22	0.2869	0.1182	9.06	60.21	37.29	108.36	0.36	0.2597
B1	265.63	90.63	45.49	0.4275	0.1993	9.05	51.72	35.16	110.85	0.38	0.2721
B1	266.55	90.66	48.75	0.4906	0.2430	9.05	37.59	30.60	107.38	0.36	0.2549
B1	268.22	90.73	38.44	0.2912	0.1204	9.04	76.32	50.68	107.62	0.36	0.2560

Figura A.4: Planilha de cálculos interpretativos referentes à zona B1 - parte um.

		PHIsh	PHIshCORR	a	m calc	RwSNcorr FT	SAL RwSNcorr	aRw	RwDIR @FT
PARAM	ETROS	0.583	0.417	0.912	1.300	9.032	459ppm NaCl	9.03	12.234
ZONA	Prof	PHIE	CAL	RSN/Rm	RSNcorr	DIR	RwA SNcorr	RwA DIR	F=SNcorr/RwASNcorr
B1	232.26	0.2534	11.68	4.53	62.31	73.86	10.46	12.40	6.90
B1	233.02	0.2339	11.68	5.08	69.74	66.05	10.55	9.99	7.72
B1	233.93	0.2573	11.67	5.77	79.25	93.86	13.57	16.07	8.77
B1	234.85	0.2616	11.65	6.00	82.40	107.37	14.41	18.78	9.12
B1	235.76	0.2728	11.65	4.95	67.98	76.70	12.56	14.17	7.53
B1	236.68	0.2242	11.65	3.96	54.29	55.35	7.77	7.92	6.01
B1	237.59	0.2608	11.65	3.60	49.41	47.38	8.61	8.26	5.47
B1	238.51	0.2052	11.65	3.30	45.30	42.74	5.78	5.45	5.02
B1	239.42	0.2191	11.65	3.52	48.21	47.43	6.70	6.59	5.34
B1	240.33	0.2312	11.65	3.85	52.79	57.19	7.87	8.52	5.84
B1	241.25	0.2359	11.65	4.22	57.84	72.52	8.84	11.09	6.40
B1	242.16	0.2071	11.63	3.91	53.51	58.80	6.91	7.59	5.92
B1	243.08	0.2031	11.62	3.74	51.15	51.68	6.44	6.50	5.66
B1	243.84	0.1884	11.63	3.82	52.28	53.60	5.97	6.12	5.79
B1	244.75	0.2155	11.62	4.30	58.78	65.05	7.99	8.84	6.51
B1	245.67	0.2130	11.63	4.18	57.12	60.47	7.65	8.10	6.32
B1	246.58	0.2123	11.62	3.84	52.53	51.98	7.01	6.93	5.82
B1	247.50	0.2357	11.62	4.33	59.13	65.56	9.03	10.02	6.55
B1	248.41	0.2120	11.62	4.78	65.33	/4.63	8.69	9.93	7.23
B1	249.33	0.2306	11.57	4.97	67.83	82.01	10.07	12.18	7.51
B1	250.24	0.2365	11.5/	4.89	66.75	83.56	10.24	12.82	7.39
B1	201.10	0.2442	11.00	4.38	59.80	02.34	9.57	9.97	0.02
B1	202.07	0.1708	11.00	3.90	04.0Z	04.01	0.02	0.74	0.98
 	202.90	0.2322	11.00	4.02	01.0Z	62 70	9.23	10.11	0.02
D1	200.90	0.2217	11.01	4.59	09.00	03.79	0.44	9.00	0.03
 	255.57	0.2204	11.52	4.41	60.78	64.48	0.71	9.00	6.73
B1	256.40	0.2322	11.52	4.40	50.70	62.01	7.76	8.00	6.57
B1	257.40	0.2030	11.53	4.00	57 10	57.83	7.44	7 54	6.32
B1	258.32	0.2000	11.54	4 22	57.41	62.31	8.02	8.71	6.36
B1	259.23	0.2224	11.54	3 70	50.31	44 69	7 13	6.33	5.57
B1	260.15	0 2094	11.55	3.95	53 73	51 73	7 04	6 78	5.95
B1	261.06	0 2514	11.51	4 45	60.57	69.77	10.06	11 59	6 71
B1	261.98	0.2147	11.55	4 22	57.43	61.94	7.77	8.38	6.36
B1	262.89	0.2353	11.63	4.15	56.37	59.75	8.59	9.11	6.24
B1	263.80	0.2112	11.62	4.27	58.07	64.88	7.69	8.59	6.43
B1	264.72	0.2105	11.63	4.12	55.93	60.21	7.38	7.94	6.19
B1	265.63	0.1890	11.63	3.88	52.74	51.72	6.05	5.93	5.84
B1	266.55	0.1536	11.61	3.38	45.90	37.59	4.02	3.29	5.08
B1	268.22	0.2059	11.72	5.60	76.02	76.32	9.74	9.78	8.42

Figura A.5: Planilha de cálculos interpretativos referentes à zona B1 - parte dois.

ZONA	Prof	FDIR	a	F*=a/PHle^m	m A	m R	kJ (mD)	RE	kC (mD)	kM (mD)	kM (m²)	μ (Pa.s)	K (m/dia)
B1	232.26	6.04	1.158	5.43	1.300	1.664	2383	0.177	895	1639	1.62E-12	0.000759	1.81
B1	233.02	5.40	1.168	6.03	1.300	1.677	1682	0.199	486	1084	1.07E-12	0.000759	1.20
B1	233.93	7.67	1.502	5.33	1.300	1.653	2545	0.127	2064	2304	2.28E-12	0.000759	2.55
B1	234.85	8.78	1.596	5.21	1.300	1.646	2739	0.109	3130	2935	2.91E-12	0.000758	3.24
B1	235.76	6.27	1.391	4.94	1.300	1.644	3301	0.122	2847	3074	3.04E-12	0.000758	3.40
B1	236.68	4.52	0.860	6.37	1.300	1.680	1404	0.173	581	992	9.82E-13	0.000757	1.10
B1	237.59	3.87	0.953	5.23	1.300	1.654	2703	0.141	1729	2216	2.19E-12	0.000757	2.45
B1	238.51	3.49	0.640	7.15	1.300	1.695	965	0.180	366	665	6.59E-13	0.000757	0.74
B1	239.42	3.88	0.742	6.56	1.300	1.682	1273	0.162	618	945	9.36E-13	0.000756	1.05
B1	240.33	4.67	0.871	6.12	1.300	1.669	1603	0.137	1141	1372	1.36E-12	0.000756	1.52
B1	241.25	5.93	0.979	5.96	1.300	1.667	1745	0.139	1183	1464	1.45E-12	0.000756	1.62
B1	242.16	4.81	0.765	7.06	1.300	1.690	1003	0.161	502	753	7.45E-13	0.000755	0.84
B1	243.08	4.22	0.713	7.25	1.300	1.688	924	0.136	688	806	7.98E-13	0.000755	0.90
B1	243.84	4.38	0.661	7.99	1.300	1.702	676	0.148	415	546	5.40E-13	0.000755	0.61
B1	244.75	5.32	0.885	6.71	1.300	1.681	1186	0.145	755	971	9.61E-13	0.000754	1.08
B1	245.67	4.94	0.847	6.81	1.300	1.683	1128	0.145	718	923	9.14E-13	0.000754	1.03
B1	246.58	4.25	0.776	6.84	1.300	1.686	1113	0.158	579	846	8.38E-13	0.000754	0.94
B1	247.50	5.36	1.000	5.97	1.300	1.667	1740	0.137	1231	1486	1.47E-12	0.000753	1.65
B1	248.41	6.10	0.963	6.85	1.300	1.685	1106	0.150	653	880	8.71E-13	0.000753	0.98
B1	249.33	6.70	1.115	6.14	1.300	1.670	1583	0.138	1106	1344	1.33E-12	0.000753	1.50
B1	250.24	6.83	1.134	5.95	1.300	1.665	1764	0.132	1361	1563	1.55E-12	0.000752	1.74
B1	251.16	5.10	1.059	5.70	1.300	1.662	2027	0.139	1373	1700	1.68E-12	0.000752	1.90
B1	252.07	4.46	0.629	8.68	1.300	1.721	520	0.194	168	344	3.41E-13	0.000751	0.38
B1	252.98	5.51	1.022	6.09	1.300	1.669	1632	0.140	1102	1367	1.35E-12	0.000751	1.53
B1	253.90	5.21	0.935	6.47	1.300	1.672	1338	0.125	1187	1262	1.25E-12	0.000751	1.41
B1	254.81	5.46	0.965	6.29	1.300	1.671	1463	0.131	1166	1314	1.30E-12	0.000750	1.47
B1	255.57	5.27	1.008	6.09	1.300	1.665	1631	0.122	1516	1574	1.56E-12	0.000750	1.76
B1	256.49	5.14	0.859	6.98	1.300	1.684	1043	0.140	722	883	8.74E-13	0.000750	0.99
B1	257.40	4.73	0.824	7.00	1.300	1.686	1034	0.144	667	850	8.42E-13	0.000749	0.95
B1	258.32	5.09	0.888	6.53	1.300	1.677	1298	0.140	882	1090	1.08E-12	0.000749	1.22
B1	259.23	3.65	0.789	6.44	1.300	1.679	1358	0.160	676	1017	1.01E-12	0.000749	1.14
B1	260.15	4.23	0.780	6.96	1.300	1.686	1052	0.147	645	848	8.40E-13	0.000748	0.95
B1	261.06	5.70	1.114	5.49	1.300	1.657	2303	0.130	1786	2044	2.02E-12	0.000748	2.29
B1	261.98	5.06	0.861	6.74	1.300	1.685	1169	0.164	550	859	8.51E-13	0.000748	0.96
B1	262.89	4.88	0.951	5.98	1.300	1.665	1725	0.127	1442	1584	1.57E-12	0.000747	1.78
B1	263.80	5.30	0.851	6.89	1.300	1.685	1089	0.151	626	858	8.49E-13	0.000747	0.96
B1	264.72	4.92	0.817	6.92	1.300	1.686	1074	0.153	600	837	8.29E-13	0.000747	0.94
B1	265.63	4.23	0.670	7.95	1.300	1.709	685	0.192	226	456	4.51E-13	0.000746	0.51
B1	266.55	3.07	0.445	10.42	1.300	1.748	294	0.203	86	190	1.88E-13	0.000746	0.21
B1	268.22	6.24	1.078	7.12	1.300	1.689	978	0.153	554	766	7.58E-13	0.000745	0.86

Figura A.6: Planilha de cálculos interpretativos referentes à zona B1 - parte três.

PA	RÂMETR	os	Intervalo	P.Final	AGR	TSup	GG(°F/m)	Rm	DTm	DTf	DTsh
			268/292	365	3	80	0.04	10	56	200	140
									I		
ZONA	Prof	FT	GR	IGR	VSHGR	Rm@FT	DIR	RSN	DT	PHIS	PHISC
B 2	268.99	90.76	34.27	0.2105	0.0816	9.04	156.26	64.58	106.77	0.35	0.2518
B2	269.60	90.78	29.01	0.1088	0.0391	9.04	149.03	67.64	108.45	0.36	0.2601
B2	270.21	90.81	28.36	0.0962	0.0342	9.04	130.11	67.44	111.20	0.38	0.2738
B2	270.81	90.83	32.78	0.1817	0.0689	9.04	101.97	66.08	110.97	0.38	0.2726
B2	271.42	90.86	31.73	0.1613	0.0603	9.03	129.37	64.45	112.29	0.39	0.2792
B2	272.03	90.88	38.20	0.2865	0.1181	9.03	137.10	63.76	111.11	0.38	0.2734
B 2	272.64	90.91	33.73	0.2002	0.0770	9.03	135.88	64.30	109.16	0.37	0.2637
B2	273.25	90.93	30.49	0.1375	0.0505	9.03	110.35	64.56	108.32	0.36	0.2595
B2	273.86	90.95	35.98	0.2436	0.0970	9.03	103.16	65.40	107.43	0.36	0.2551
B2	274.47	90.98	34.22	0.2096	0.0812	9.02	131.97	65.30	107.73	0.36	0.2566
B2	275.08	91.00	37.46	0.2722	0.1108	9.02	133.25	64.02	107.93	0.36	0.2576
B2	275.69	91.03	35.95	0.2430	0.0966	9.02	125.64	61.98	108.61	0.37	0.2610
B2	276.30	91.05	26.71	0.0642	0.0224	9.02	121.11	61.17	109.07	0.37	0.2633
B2	276.91	91.08	29.05	0.1095	0.0394	9.02	113.85	59.50	109.26	0.37	0.2642
B2	277.52	91.10	32.82	0.1825	0.0693	9.01	94.34	55.00	110.13	0.38	0.2685
B2	278.13	91.13	39.84	0.3183	0.1347	9.01	101.88	51.00	109.20	0.37	0.2639
B2	278.74	91.15	29.30	0.1144	0.0413	9.01	88.74	49.52	109.06	0.37	0.2632
B2	279.35	91.17	38.46	0.2915	0.1206	9.01	55.05	39.71	106.56	0.35	0.2508
B2	279.96	91.20	52.13	0.5559	0.2944	9.01	42.05	33.91	104.03	0.33	0.2383
B2	280.72	91.23	44.44	0.4073	0.1864	9.00	49.12	35.93	106.75	0.35	0.2518
B2	281.33	91.25	34.29	0.2108	0.0818	9.00	68.41	41.64	106.22	0.35	0.2491
B2	281.94	91.28	31.79	0.1625	0.0607	9.00	88.48	48.38	105.09	0.34	0.2435
B2	282.55	91.30	30.18	0.1314	0.0480	9.00	96.48	54.04	107.22	0.36	0.2541
B2	283.16	91.33	31.28	0.1527	0.0567	9.00	101.05	58.55	108.29	0.36	0.2594
B2	283.77	91.35	29.27	0.1137	0.0410	8.99	113.36	61.58	107.80	0.36	0.2569
B2	284.38	91.38	27.58	0.0811	0.0286	8.99	124.42	63.40	107.82	0.36	0.2571
B2	284.99	91.40	29.25	0.1134	0.0409	8.99	126.33	64.93	106.10	0.35	0.2485
B2	285.60	91.42	29.80	0.1241	0.0451	8.99	129.03	65.77	105.89	0.35	0.2474
B2	286.21	91.45	26.89	0.0679	0.0237	8.99	121.86	65.20	107.77	0.36	0.2568
B2	286.82	91.47	27.41	0.0778	0.0274	8.98	121.38	65.38	108.26	0.36	0.2592
B 2	287.43	91.50	32.62	0.1786	0.0676	8.98	126.35	65.83	107.22	0.36	0.2541
B 2	288.04	91.52	34.82	0.2212	0.0865	8.98	119.33	66.26	105.77	0.35	0.2469
B2	288.65	91.55	30.10	0.1298	0.0474	8.98	113.17	65.67	109.18	0.37	0.2638
B 2	289.26	91.57	29.92	0.1264	0.0460	8.98	104.40	64.47	111.92	0.39	0.2774
B2	289.86	91.59	32.62	0.1786	0.0676	8.97	99.51	63.65	110.05	0.38	0.2681
B2	290.47	91.62	35.24	0.2292	0.0902	8.97	97.48	62.98	108.70	0.37	0.2614
B2	291.08	91.64	28.38	0.0967	0.0344	8.97	87.63	60.17	106.42	0.35	0.2501
B2	291.69	91.67	32.20	0.1705	0.0641	8.97	67.12	52.14	104.66	0.34	0.2414
B2	292.30	91.69	34.31	0.2113	0.0820	8.97	26.33	31.33	115.38	0.41	0.2946

Figura A.7: Planilha de cálculos interpretativos referentes à zona B2 - parte um.

DADÂM	ETROS	PHIsh	PHIshCORR	а	m calc	RwSNcorr FT	SAL RwSNcorr	aRw	RwDIR FT
FARAIN	EIRUS	0.583	0.417	1.300	1.499	9.032	459ppm NaCl	9.03	12.234
ZONA	Prof	PHIE	CAL	RSN/Rm	RSNcorr	DIR	RwA SNcorr	RwA DIR	F=SNcorr/RwASNcorr
B2	268.99	0.2178	11.68	7.14	96.88	156.26	13.36	21.55	10.73
B2	269.60	0.2439	11.76	7.48	101.46	149.03	16.20	23.80	11.23
B 2	270.21	0.2595	11.79	7.46	101.16	130.11	17.52	22.53	11.20
B 2	270.81	0.2439	11.71	7.31	99.12	101.97	15.84	16.29	10.97
B2	271.42	0.2541	11.71	7.13	96.67	129.37	16.28	21.79	10.70
B 2	272.03	0.2242	11.72	7.06	95.64	137.10	13.69	19.62	10.59
B 2	272.64	0.2316	11.79	7.12	96.45	135.88	14.41	20.29	10.68
B 2	273.25	0.2385	11.81	7.15	96.84	110.35	15.02	17.12	10.72
B 2	273.86	0.2147	11.65	7.25	98.10	103.16	13.28	13.96	10.86
B 2	274.47	0.2228	11.54	7.24	97.96	131.97	13.91	18.74	10.85
B 2	275.08	0.2114	11.52	7.10	96.03	133.25	12.74	17.67	10.63
B2	275.69	0.2207	11.60	6.87	92.97	125.64	13.04	17.62	10.29
B2	276.30	0.2539	11.60	6.78	91.76	121.11	15.45	20.39	10.16
B 2	276.91	0.2478	11.65	6.60	89.25	113.85	14.55	18.56	9.88
B 2	277.52	0.2396	11.65	6.10	82.49	94.34	12.88	14.73	9.13
B 2	278.13	0.2078	11.65	5.66	76.50	101.88	9.92	13.21	8.47
B 2	278.74	0.2460	11.65	5.50	74.28	88.74	12.00	14.33	8.22
B 2	279.35	0.2006	11.68	4.41	59.57	55.05	7.38	6.82	6.59
B2	279.96	0.1156	11.75	3.77	50.87	42.05	3.08	2.54	5.63
B 2	280.72	0.1741	11.81	3.99	53.90	49.12	5.55	5.06	5.97
B 2	281.33	0.2151	11.74	4.63	62.46	68.41	8.47	9.28	6.92
B 2	281.94	0.2182	11.38	5.38	72.57	88.48	10.03	12.23	8.03
B 2	282.55	0.2341	11.67	6.01	81.05	96.48	12.27	14.61	8.97
B2	283.16	0.2358	11.73	6.51	87.82	101.05	13.42	15.44	9.72
B 2	283.77	0.2398	11.74	6.85	92.38	113.36	14.44	17.72	10.23
B2	284.38	0.2451	11.75	7.05	95.10	124.42	15.29	20.00	10.53
B 2	284.99	0.2315	11.73	7.22	97.39	126.33	14.53	18.85	10.78
B 2	285.60	0.2287	11.73	7.32	98.66	129.03	14.49	18.95	10.92
B 2	286.21	0.2469	11.70	7.26	97.80	121.86	15.87	19.78	10.83
B 2	286.82	0.2478	11.68	7.28	98.07	121.38	15.99	19.80	10.86
B2	287.43	0.2259	11.66	7.33	98.74	126.35	14.28	18.27	10.93
B 2	288.04	0.2108	11.63	7.38	99.40	119.33	13.14	15.77	11.00
B 2	288.65	0.2441	11.60	7.31	98.51	113.17	15.75	18.09	10.91
B 2	289.26	0.2582	11.53	7.18	96.71	104.40	16.63	17.96	10.71
B2	289.86	0.2399	11.61	7.09	95.48	99.51	14.93	15.56	10.57
B 2	290.47	0.2238	11.61	7.02	94.47	97.48	13.49	13.92	10.46
B 2	291.08	0.2358	11.60	6.71	90.26	87.63	13.80	13.39	9.99
B 2	291.69	0.2147	11.54	5.81	78.21	67.12	10.58	9.08	8.66
B 2	292.30	0.2604	11.64	3.49	46.99	26.33	8.17	4.58	5.20

Figura A.8: Planilha de cálculos interpretativos referentes à zona B2 - parte dois.

ZONA	Prof	FDIR	a	F*=a/PHle^m	m A	m R	kJ (mD)	RE	kC (mD)	kM (mD)	kM (m²)	μ (Pa.s)	K (m/dia)
B 2	268.99	12.77	1.479	6.61	1.300	1.683	890	0.135	929	909	9.00E-13	0.000745	1.02
B 2	269.60	12.18	1.794	5.71	1.300	1.663	1480	0.120	1889	1684	1.67E-12	0.000745	1.90
B 2	270.21	10.64	1.939	5.27	1.300	1.655	1969	0.124	2273	2121	2.10E-12	0.000744	2.39
B 2	270.81	8.33	1.753	5.71	1.300	1.668	1482	0.138	1387	1435	1.42E-12	0.000744	1.62
B 2	271.42	10.57	1.803	5.41	1.300	1.662	1786	0.137	1660	1723	1.71E-12	0.000744	1.94
B 2	272.03	11.21	1.516	6.37	1.300	1.685	1012	0.159	711	862	8.53E-13	0.000744	0.97
B 2	272.64	11.11	1.595	6.11	1.300	1.675	1172	0.138	1131	1152	1.14E-12	0.000743	1.30
B 2	273.25	9.02	1.663	5.88	1.300	1.667	1337	0.125	1590	1464	1.45E-12	0.000743	1.65
B 2	273.86	8.43	1.470	6.74	1.300	1.688	834	0.142	770	802	7.94E-13	0.000743	0.90
B 2	274.47	10.79	1.540	6.42	1.300	1.681	983	0.136	986	985	9.75E-13	0.000743	1.11
B 2	275.08	10.89	1.410	6.88	1.300	1.692	779	0.149	649	714	7.07E-13	0.000743	0.81
B 2	275.69	10.27	1.444	6.50	1.300	1.684	943	0.145	830	886	8.77E-13	0.000742	1.00
B 2	276.30	9.90	1.710	5.42	1.300	1.655	1781	0.115	2481	2131	2.11E-12	0.000742	2.41
B 2	276.91	9.31	1.611	5.59	1.300	1.661	1591	0.122	1949	1770	1.75E-12	0.000742	2.00
B 2	277.52	7.71	1.426	5.84	1.300	1.670	1366	0.136	1325	1345	1.33E-12	0.000742	1.52
B 2	278.13	8.33	1.098	7.03	1.300	1.698	721	0.162	501	611	6.05E-13	0.000741	0.69
B 2	278.74	7.25	1.328	5.65	1.300	1.662	1540	0.122	1880	1710	1.69E-12	0.000741	1.93
B 2	279.35	4.50	0.817	7.36	1.300	1.701	617	0.151	515	566	5.60E-13	0.000741	0.64
B 2	279.96	3.44	0.341	15.07	1.300	1.833	59	0.218	23	41	4.07E-14	0.000741	0.05
B 2	280.72	4.02	0.615	8.85	1.300	1.732	333	0.178	195	264	2.61E-13	0.000740	0.30
B 2	281.33	5.59	0.938	6.73	1.300	1.685	840	0.134	898	869	8.60E-13	0.000740	0.98
B 2	281.94	7.23	1.110	6.60	1.300	1.679	897	0.123	1159	1028	1.02E-12	0.000740	1.16
B 2	282.55	7.89	1.359	6.02	1.300	1.669	1228	0.122	1565	1397	1.38E-12	0.000740	1.58
B 2	283.16	8.26	1.486	5.97	1.300	1.670	1269	0.127	1450	1360	1.35E-12	0.000739	1.54
B 2	283.77	9.27	1.598	5.84	1.300	1.665	1372	0.120	1784	1578	1.56E-12	0.000739	1.79
B 2	284.38	10.17	1.693	5.67	1.300	1.660	1516	0.115	2150	1833	1.81E-12	0.000739	2.08
B 2	284.99	10.33	1.609	6.11	1.300	1.668	1168	0.116	1653	1410	1.40E-12	0.000739	1.60
B 2	285.60	10.55	1.604	6.21	1.300	1.671	1106	0.118	1534	1320	1.31E-12	0.000738	1.50
B 2	286.21	9.96	1.757	5.62	1.300	1.658	1566	0.113	2309	1937	1.92E-12	0.000738	2.20
B 2	286.82	9.92	1.771	5.59	1.300	1.659	1593	0.115	2230	1912	1.89E-12	0.000738	2.17
B 2	287.43	10.33	1.581	6.31	1.300	1.676	1047	0.130	1171	1109	1.10E-12	0.000738	1.26
B 2	288.04	9.75	1.455	6.90	1.300	1.688	770	0.135	814	792	7.84E-13	0.000738	0.90
B 2	288.65	9.25	1.744	5.71	1.300	1.664	1486	0.125	1730	1608	1.59E-12	0.000737	1.83
B 2	289.26	8.53	1.842	5.30	1.300	1.658	1923	0.130	1986	1954	1.93E-12	0.000737	2.22
B 2	289.86	8.13	1.653	5.83	1.300	1.670	1374	0.135	1351	1363	1.35E-12	0.000737	1.55
B 2	290.47	7.97	1.494	6.39	1.300	1.681	1004	0.142	914	959	9.49E-13	0.000737	1.09
B 2	291.08	7.16	1.527	5.97	1.300	1.665	1270	0.114	1852	1561	1.55E-12	0.000736	1.78
B 2	291.69	5.49	1.171	6.74	1.300	1.682	833	0.123	1074	954	9.44E-13	0.000736	1.09
B 2	292.30	2.15	0.905	5.24	1.300	1.662	2000	0.152	1431	1716	1.70E-12	0.000736	1.95

Figura A.9: Planilha de cálculos interpretativos referentes à zona B2 - parte três.

		~~	Intervalo	P.Final	AGR	TSup	GG(°F/m)	Rm	DTm	DTf	DTsh
PA	RAMETR	OS	313/338	365	3	80	0.04	10	56	200	140
ZONA	Prof	FT	GR	IGR	VSHGR	Rm@FT	DIR	RSN	DT	PHIS	PHISC
С	313.94	92.56	49.4255	0.3697	0.1635	8.90	33.31	23.98	117.36	0.43	0.3044
С	314.55	92.58	56.0016	0.4505	0.2146	8.90	31.95	23.31	118.05	0.43	0.3078
С	315.16	92.61	54.1871	0.4282	0.1998	8.90	32.87	23.69	119.37	0.44	0.3143
С	315.77	92.63	55.8174	0.4483	0.2131	8.89	30.71	22.25	119.06	0.44	0.3128
С	316.38	92.66	52.4287	0.4066	0.1859	8.89	30.06	21.72	117.50	0.43	0.3051
С	316.99	92.68	53.1637	0.4156	0.1917	8.89	29.98	22.02	117.96	0.43	0.3073
С	317.6	92.70	58.8795	0.4859	0.2396	8.89	28.11	21.47	119.78	0.44	0.3164
С	318.21	92.73	71.3846	0.6396	0.3717	8.89	29.05	22.42	117.27	0.43	0.3039
С	318.82	92.75	71.5923	0.6422	0.3743	8.88	39.15	27.20	113.94	0.40	0.2874
С	319.43	92.78	42.5423	0.2851	0.1173	8.88	62.81	39.23	109.80	0.37	0.2668
С	320.04	92.80	37.5111	0.2232	0.0874	8.88	89.23	47.63	111.83	0.39	0.2769
С	320.65	92.83	38.0936	0.2304	0.0907	8.88	101.11	51.78	111.39	0.38	0.2747
С	321.26	92.85	23.3199	0.0488	0.0168	8.88	123.84	56.85	110.37	0.38	0.2697
С	321.87	92.87	31.4884	0.1492	0.0552	8.87	76.64	57.14	110.51	0.38	0.2704
С	322.48	92.90	37.0705	0.2178	0.0849	8.87	99.57	56.68	109.52	0.37	0.2655
С	323.09	92.92	31.9937	0.1554	0.0578	8.87	106.25	58.52	109.55	0.37	0.2656
С	323.7	92.95	28.763	0.1157	0.0418	8.87	109.67	60.22	108.70	0.37	0.2614
С	324.31	92.97	31.4196	0.1483	0.0549	8.87	115.51	61.93	107.07	0.35	0.2533
С	324.92	93.00	28.1588	0.1082	0.0389	8.86	131.02	65.82	105.42	0.34	0.2451
С	325.53	93.02	28.645	0.1142	0.0412	8.86	155.56	68.90	105.21	0.34	0.2441
С	326.29	93.05	22.5204	0.0389	0.0133	8.86	150.20	70.87	107.49	0.36	0.2554
С	326.9	93.08	24.1242	0.0586	0.0203	8.86	140.21	70.33	108.23	0.36	0.2591
С	327.51	93.10	27.4981	0.1001	0.0358	8.86	145.59	68.58	108.35	0.36	0.2597
С	328.12	93.12	26.3943	0.0866	0.0306	8.85	177.19	66.08	110.63	0.38	0.2710
С	328.73	93.15	27.632	0.1018	0.0364	8.85	161.50	60.46	111.72	0.39	0.2764
С	329.34	93.17	25.2787	0.0728	0.0255	8.85	59.39	47.65	115.41	0.41	0.2947
С	329.95	93.20	73.9176	0.6708	0.4045	8.85	38.35	32.06	128.02	0.50	0.3572
С	330.56	93.22	58.53	0.4816	0.2365	8.85	44.49	38.42	115.50	0.41	0.2951
С	331.17	93.25	29.2105	0.1212	0.0439	8.85	111.84	55.48	110.54	0.38	0.2705
С	331.77	93.27	26.7667	0.0911	0.0323	8.84	134.36	64.77	108.93	0.37	0.2626
С	332.38	93.30	30.3315	0.1350	0.0494	8.84	155.92	68.11	108.48	0.36	0.2603
С	332.99	93.32	25.8174	0.0795	0.0280	8.84	123.27	68.79	107.60	0.36	0.2560
С	333.6	93.34	25.6246	0.0771	0.0271	8.84	101.42	65.92	107.97	0.36	0.2578
С	334.21	93.37	31.6567	0.1512	0.0561	8.84	90.32	61.40	108.72	0.37	0.2615
С	334.82	93.39	29.6631	0.1267	0.0461	8.83	84.73	61.67	107.12	0.36	0.2536
С	335.43	93.42	28.1461	0.1081	0.0388	8.83	82.82	61.98	107.02	0.35	0.2531
С	336.04	93.44	27.4639	0.0997	0.0356	8.83	78.27	60.87	107.60	0.36	0.2560
С	336.65	93.47	29.5107	0.1249	0.0454	8.83	75.94	57.79	108.28	0.36	0.2593
С	337.26	93.49	29.4901	0.1246	0.0453	8.83	54.37	49.80	106.97	0.35	0.2528
С	337.87	93.51	41.1799	0.2683	0.1089	8.82	16.96	27.80	115.98	0.42	0.2975

Figura A.10: Planilha de cálculos interpretativos referentes à zona C - parte um.

		PHIsh	PHIshCORR	a	m calc	RwSNcorr FT	SAL RwSNcorr	aRw	RwDIR @ FT
PARAM	ETROS	0.583	0.417	0.820	1.535	10.229	383ppm NaCl	0.00	12.064
ZONA	Prof	PHIE	CAL	RSN/Rm	RSNcorr	DIR	RwA SNcorr	RwA DIR	F=SNcorr/RwASNcorr
С	313.94	0.2362	11.75	2.69	35.97	33.31	3.93	3.64	3.52
С	314.55	0.2184	11.79	2.62	34.97	31.95	3.38	3.09	3.42
С	315.16	0.2311	11.81	2.66	35.54	32.87	3.75	3.47	3.47
С	315.77	0.2240	11.84	2.50	33.38	30.71	3.36	3.09	3.26
С	316.38	0.2276	11.82	2.44	32.58	30.06	3.36	3.10	3.19
С	316.99	0.2275	11.82	2.48	33.03	29.98	3.40	3.09	3.23
С	317.6	0.2165	11.82	2.42	32.20	28.11	3.08	2.69	3.15
С	318.21	0.1490	11.83	2.52	33.63	29.05	1.81	1.56	3.29
С	318.82	0.1314	11.85	3.06	40.80	39.15	1.81	1.74	3.99
С	319.43	0.2180	11.84	4.42	58.84	62.81	5.68	6.06	5.75
С	320.04	0.2405	11.82	5.36	71.45	89.23	8.02	10.01	6.98
С	320.65	0.2369	11.81	5.83	77.67	101.11	8.52	11.09	7.59
С	321.26	0.2627	11.81	6.41	85.28	123.84	10.96	15.91	8.34
С	321.87	0.2474	11.82	6.44	85.71	76.64	10.04	8.98	8.38
С	322.48	0.2301	11.80	6.39	85.03	99.57	8.91	10.44	8.31
С	323.09	0.2415	11.78	6.60	87.79	106.25	9.92	12.00	8.58
С	323.7	0.2440	11.81	6.79	90.32	109.67	10.36	12.58	8.83
С	324.31	0.2305	11.82	6.98	92.90	115.51	9.76	12.14	9.08
С	324.92	0.2289	11.85	7.42	98.72	131.02	10.27	13.63	9.65
С	325.53	0.2269	11.84	7.77	103.35	155.56	10.61	15.96	10.10
С	326.29	0.2498	11.82	8.00	106.31	150.20	12.65	17.87	10.39
С	326.9	0.2506	11.81	7.94	105.49	140.21	12.61	16.76	10.31
С	327.51	0.2448	11.82	7.74	102.87	145.59	11.86	16.78	10.06
С	328.12	0.2582	11.82	7.46	99.12	177.19	12.41	22.18	9.69
С	328.73	0.2612	11.85	6.83	90.68	161.50	11.55	20.57	8.87
С	329.34	0.2841	11.78	5.38	71.48	59.39	10.36	8.61	6.99
C	329.95	0.1887	11.72	3.62	48.09	38.35	3.72	2.97	4.70
С	330.56	0.1966	11.88	4.34	57.63	44.49	4.75	3.66	5.63
C	331.17	0.2522	11.82	6.27	83.22	111.84	10.04	13.50	8.14
C	331.77	0.2491	11.73	7.32	97.16	134.36	11.50	15.91	9.50
С	332.38	0.2397	11.77	7.70	102.16	155.92	11.41	17.41	9.99
С	332.99	0.2443	11.74	7.78	103.19	123.27	11.86	14.17	10.09
С	333.6	0.2465	11.79	7.46	98.88	101.42	11.52	11.82	9.67
С	334.21	0.2381	11.79	6.95	92.11	90.32	10.18	9.98	9.00
С	334.82	0.2344	11.79	6.98	92.50	84.73	9.97	9.14	9.04
С	335.43	0.2369	11.78	7.02	92.97	82.82	10.19	9.08	9.09
С	336.04	0.2411	11.79	6.89	91.30	78.27	10.28	8.82	8.93
С	336.65	0.2404	11.77	6.55	86.68	75.94	9.72	8.52	8.47
С	337.26	0.2339	11.74	5.64	74.70	54.37	8.03	5.85	7.30
C	337.87	0.2521	11.73	3.15	41.70	16.96	5.03	2.05	4.08

Figura A.11: Planilha de cálculos interpretativos referentes à zona C - parte dois.

ZONA	Prof	FDIR	a	F*=a/PHIe^m	m A	m R	kJ (mD)	RE1	kC (mD)	kM (mD)	kM (m²)	μ (Pa.s)	K (m/dia)
С	313.94	2.76	0.384	7.51	1.535	1.684	1210	0.190	567	888	8.79E-13	0.000728	1.02
С	314.55	2.65	0.331	8.47	1.535	1.700	847	0.213	312	579	5.74E-13	0.000727	0.67
С	315.16	2.72	0.367	7.76	1.535	1.690	1095	0.209	409	752	7.44E-13	0.000727	0.87
С	315.77	2.55	0.328	8.15	1.535	1.696	950	0.214	340	645	6.39E-13	0.000727	0.74
С	316.38	2.49	0.328	7.95	1.535	1.691	1021	0.199	432	726	7.19E-13	0.000727	0.84
С	316.99	2.48	0.333	7.96	1.535	1.692	1018	0.203	414	716	7.09E-13	0.000727	0.83
С	317.6	2.33	0.301	8.58	1.535	1.703	815	0.226	257	536	5.31E-13	0.000726	0.62
С	318.21	2.41	0.177	15.23	1.535	1.782	159	0.276	34	96	9.54E-14	0.000726	0.11
С	318.82	3.24	0.177	18.47	1.535	1.812	93	0.271	22	57	5.69E-14	0.000726	0.07
С	319.43	5.21	0.555	8.50	1.535	1.690	840	0.156	664	752	7.45E-13	0.000726	0.87
С	320.04	7.40	0.784	7.30	1.535	1.673	1314	0.147	1123	1218	1.21E-12	0.000725	1.41
С	320.65	8.38	0.833	7.47	1.535	1.676	1227	0.148	1050	1138	1.13E-12	0.000725	1.32
С	321.26	10.27	1.071	6.38	1.535	1.652	1975	0.115	2827	2401	2.38E-12	0.000725	2.78
С	321.87	6.35	0.982	6.99	1.535	1.665	1495	0.131	1643	1569	1.55E-12	0.000725	1.82
С	322.48	8.25	0.871	7.82	1.535	1.678	1073	0.142	1030	1051	1.04E-12	0.000724	1.22
С	323.09	8.81	0.969	7.26	1.535	1.668	1339	0.130	1516	1428	1.41E-12	0.000724	1.65
С	323.7	9.09	1.013	7.14	1.535	1.664	1403	0.122	1837	1620	1.60E-12	0.000724	1.88
С	324.31	9.57	0.954	7.80	1.535	1.673	1081	0.124	1403	1242	1.23E-12	0.000724	1.44
С	324.92	10.86	1.004	7.88	1.535	1.670	1049	0.114	1651	1350	1.34E-12	0.000724	1.56
С	325.53	12.89	1.037	7.99	1.535	1.671	1007	0.115	1576	1292	1.28E-12	0.000723	1.50
С	326.29	12.45	1.236	6.89	1.535	1.656	1565	0.108	2674	2119	2.10E-12	0.000723	2.46
С	326.9	11.62	1.233	6.86	1.535	1.657	1587	0.112	2474	2030	2.01E-12	0.000723	2.35
С	327.51	12.07	1.159	7.11	1.535	1.662	1424	0.119	1976	1700	1.68E-12	0.000723	1.97
С	328.12	14.69	1.213	6.55	1.535	1.656	1824	0.121	2340	2082	2.06E-12	0.000722	2.42
С	328.73	13.39	1.129	6.43	1.535	1.656	1925	0.126	2252	2088	2.07E-12	0.000722	2.42
С	329.34	4.92	1.012	5.66	1.535	1.646	2857	0.129	2994	2926	2.90E-12	0.000722	3.40
С	329.95	3.18	0.364	10.60	1.535	1.734	442	0.311	62	252	2.50E-13	0.000722	0.29
С	330.56	3.69	0.464	9.95	1.535	1.719	530	0.217	196	363	3.59E-13	0.000721	0.42
С	331.17	9.27	0.982	6.79	1.535	1.661	1634	0.127	1929	1782	1.76E-12	0.000721	2.07
С	331.77	11.14	1.125	6.92	1.535	1.660	1543	0.119	2130	1837	1.82E-12	0.000721	2.14
С	332.38	12.92	1.115	7.34	1.535	1.667	1293	0.125	1626	1460	1.45E-12	0.000721	1.70
С	332.99	10.22	1.159	7.13	1.535	1.661	1411	0.114	2150	1781	1.76E-12	0.000720	2.07
С	333.6	8.41	1.127	7.03	1.535	1.660	1471	0.114	2213	1842	1.82E-12	0.000720	2.14
С	334.21	7.49	0.995	7.42	1.535	1.669	1255	0.128	1494	1374	1.36E-12	0.000720	1.60
С	334.82	7.02	0.975	7.60	1.535	1.669	1166	0.121	1602	1384	1.37E-12	0.000720	1.61
С	335.43	6.87	0.997	7.47	1.535	1.666	1226	0.117	1780	1503	1.49E-12	0.000720	1.75
С	336.04	6.49	1.005	7.28	1.535	1.664	1329	0.117	1917	1623	1.61E-12	0.000719	1.89
С	336.65	6.29	0.950	7.31	1.535	1.666	1311	0.123	1710	1510	1.50E-12	0.000719	1.76
С	337.26	4.51	0.785	7.62	1.535	1.669	1157	0.120	1611	1384	1.37E-12	0.000719	1.61
С	337.87	1.41	0.492	6.79	1.535	1.670	1632	0.164	1044	1338	1.32E-12	0.000719	1.56

Figura A.12: Planilha de cálculos interpretativos referentes à zona C - parte três.

Referências

- Alger, R. et al. (1966) Interpretation of electric logs in fresh water wells in unconsolidated formations, In: SPWLA 7th Annual Logging Symposium, Tulsa, Oklahoma, Society of Petrophysicists and Well-Log Analysts.
- Archie, G. (1942) The electrical resistivity log as an aid in determining some reservoir characteristics, Transactions of the AIME, 146(01):54–62.
- Asquith, G. B.; Krygowski, D. e Gibson, C. R. (2004) Basic well log analysis, vol. 16, American association of petroleum geologists Tulsa.
- Cabral, J. J. d. S. P. (2008) Movimento das aguas subterrâneas, Hidrogeologia: conceitos e aplicações, **3**.
- Coates, G. R. e Dumanoir, J. (1973) A new approach to improved log-derived permeability, In: SPWLA 14th Annual Logging Symposium, Lafayette, Louisiana, Society of Petrophysicists and Well-Log Analysts.
- Costa, I.; Milhomem, P.; Bueno, G.; Silva, H. e Kosin, M. (2007) Sub-bacias de tucano sul e central, Boletim de Geociências da PETROBRAS, **15**(2):433–443.
- Crain, E. (2000) Crain's petrophysical handbook, Spectrum.
- Delhorme, J. P. (2007) The quest for permeability evaluation in wireline logging, Aquifer Systems Management Darcy's Legacy in a World of Impending Water Shortage, pp. 56-70.
- Doll, H. et al. (1949) Introduction to induction logging and application to logging of wells drilled with oil base mud, Journal of Petroleum Technology, **1**(06):148–162.
- Graça, M. C. (2013) Mapeamento eletrofaciológico em reservatório análogo na bacia sedimentar de Tucano por meio de perfis geofísicos de poços, Trabalho de Graduação, Universidade Federal da Bahia, Salvador, Bahia, Brasil.
- Hazen, A. (1911) Discussion of "dams on soil foundations": Transactions american society of civil engineers, v. 73.

- Jackson, P.; Smith, D. T. e Stanford, P. (1978) Resistivity-porosity-particle shape relationships for marine sands, Geophysics, **43**(6):1250–1268.
- Jorgensen, D. G. (1989) Using geophysical logs to estimate porosity, water resistivity, and intrinsic permeability, USGS Water-supply paper, **232**(1):24.
- Jorgensen, D. G. (1991) Estimating geohydrologic properties from borehole-geophysical logs, Groundwater Monitoring & Remediation, **11**(3):123–129.
- Lima, O. (2014) Propriedades físicas das rochas-bases da geofísica aplicada, Sociedade Brasileira de Geofísica (SBGf)-Rio de Janeiro.
- Lima, O. e Girão Nery, G. (1999) Determinação das resistividades verdadeiras das águas subterrâneas usando perfilagens de potencial espontâneo, 6th Intern. Congr. of the Brazilian Geoph. Soc. Rio de Janeiro, SBGf.
- Magnavita, L.; Destro, N.; Carvalho, M.; Milhomen, P. e Souza-Lima, W. (2003) Bacia de Tucano, Fundação paleontológica PHOENIX. Ano, **5**:n52.
- Matos, C. F. (2013) Estudo das variações dos sais totais dissolvidos das águas subterrâneas na região de Cícero Dantas por meio de perfis geofísicos, Trabalho de Graduação, Universidade Federal da Bahia, Salvador, Bahia, Brasil.
- Nery, G. (1996) Equações hiperbólicas relacionando Rw com STD: Determinação da qualidade da água através dos perfis geofísicos, Congr. Brasileiro de águas subterrâneas.
- Nery, G. G. (2013) Perfilagem geofísica em poço aberto: fundamentos básicos com ênfase em petróleo, INCTGP/CNPq-SBGf.
- Peixinho, M. (2016) Hidrogeologia do sistema aquífero Marizal/São Sebastião na sub-bacia do tucano central, estado da bahia, Dissertação de Mestrado. Salvador BA.
- Raiga-Clemenceau, J. (1977) The cementation exponent in the formation factor-porosity relation: The effect of permeability, In: SPWLA 18th Annual Logging Symposium, Society of Petrophysicists and Well-Log Analysts.
- Remacre, A. Z.; Ferreira, A. A. e Souza, O. G. (1989) Spatial Distribution of Erratic Shales Using Conditional Simulation, pp. 507–516, Springer Netherlands, Dordrecht, ISBN 978-94-015-6844-9.
- Schön, J. (2004) Physical Properties of Rocks: Fundamentals and Principles of Petrophysics, Developments in Petroleum Science Series, Elsevier.
- Schopper, J. (1982) Porosity and permeability, numerical data and functional relationships in Science and Technology. Springer, Berlin Heidelberg New York, pp. 184–193.

- Slinker, B. K. e Glantz, S. A. (2008) Multiple linear regression, Circulation, 117(13):1732– 1737.
- Tiab, D. e Donaldson, E. C. (2015) Petrophysics: theory and practice of measuring reservoir rock and fluid transport properties, Gulf professional publishing.
- Ursin, J.-R. e Zolotukhin, A. B. (1997) Fundamentals of Petroleum Reservoir Engineering, Norwegian Academic Press, Høyskoleforlaget.
- Viana, C.; Gama Jr, E.; Simoes, I.; Moura, J.; Fonseca, J. e Alves, R. (1971) Revisão estratigráfica da bacia Recôncavo/Tucano, Boletim Técnico da Petrobrás, 14(3/4):157– 192.
- Winsauer, W.; McCardell, W. et al. (1953) Ionic double-layer conductivity in reservoir rock, Journal of Petroleum Technology, 5(05):129–134.
- Wyllie, M. e Rose, W. D. (1950) Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rock from electrical log data, Journal of Petroleum Technology, **2**(04):105–118.