

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE GEOCIÊNCIAS CURSO DE GRADUAÇÃO EM GEOFÍSICA

GEO213 – TRABALHO DE GRADUAÇÃO

Mapeamento Sísmico em Horizontes Rasos com Base no Tempo Compressional Integrado obtido por meio do Perfil Sônico Compensado

Isis Ribeiro Berbert Tavares

SALVADOR – BAHIA AGOSTO – 2018

Mapeamento Sísmico em Horizontes Rasos com Base no Tempo Compressional Integrado obtido por meio do Perfil Sônico Compensado

por

Isis Ribeiro Berbert Tavares

Orientador: Prof. Mc. Geraldo Girão Nery

GEO213 – TRABALHO DE GRADUAÇÃO

Departamento de Geofísica

DO

Instituto de Geociências

DA

Universidade Federal da Bahia

Comissão Examinadora

Mc. Geraldo Girão Nery

Dr. Michelângelo Gomes da Silva

Mc. Alexsandro Guerra Cerqueira

Data da aprovação: 03/08/2018

"... a lagarta que rasteja, rasteja pra evoluir, depois vira borboleta e voa por ai...." (Bráulio Bessa)

Resumo

O perfil Sônico é uma ferramenta geofísica que registra a velocidade do som através da emissão de ondas acústicas. Uma onda compressional de frequência 20 kHz é emitida no poço e se espalha para todas as direções, porém a ferramenta busca registrar a chegada da primeira onda refratada. Esse estudo visa calcular o tempo de trânsito integrado (TTI) a partir da curva do perfil Sônico compensado e fazer um estudo da velocidade de propagação da onda em uma camada de interesse. O TTI será útil para o mapeamento dos horizontes objeto de estudo. Com base nesses horizontes mapeados é possível compreender como as feições geológicas existentes em subsuperfície atuam na disposição geológica das camadas.

Durante as últimas décadas, várias metodologias sísmicas foram desenvolvidas e utilizadas para o estudo de diferentes feições rasas em subsuperfície. Uma delas, para o mapeamento da estrutura de aquíferos em regiões de suprimento insuficiente de água (Shtivelman, 2003). Considerando que o único perfil não radioativo disponível, e costumeiramente usado na indústria da água, para a determinação da porosidade é o Sônico, o presente trabalho é uma contribuição de como se poderia usá-lo no semi-árido do nordeste brasileiro.

Será utilizada uma linha pré-stack obtida na região, que será devidamente processada. Essa linha terá a finalidade de servir como base de comparação com os resultados obtidos utilizando tanto o tempo de trânsito (Δt) registrado como a sua integração, nos casos onde geralmente eles não são usados, como em poços perfurados para a produção de água subterrânea.

Porém, nem sempre há disposição de dados sísmicos de confiabilidade, seja pela má qualidade da aquisição (principalmente com linhas muito antigas), seja pela existência de camadas muito intemperizadas, como no caso desse estudo. Portanto, esse trabalho reforça a importância de se obter um mapeamento através da curva do Sônico para casos em que a linha sísmica não seja de qualidade.

Abstract

The Sonic log is a geophysical tool that records the speed of sound through the emission of acoustic waves. A compressional wave of frequency 20 kHz is emitted in the well and spreads in all directions, but the tool records the arrival of the first refracted wave. This study aims to calculate the integrated transit time (ITT) from the curve of the compensated sonic log and make a study of the wave propagation speed in a layer of interest. The ITT will be useful for the mapping of the horizons object of study. Based on these mapped horizons it is possible to understand how the existing geological features in subsurface act on the geological layout of the layers.

During the last decades, several seismic methodologies have been developed and used for the study of different subsurface shallow features. One of them, the mapping of the aquifer structure in regions of insufficient water supply (Shtivelman, 2003). Considering that the only non-radioactive log available, and usually used in the water industry, to determine the porosity is the Sonic, the present work is a contribution of how it could be used in the semi-arid region of the Brazilian northeast.

A pre-stack line obtained in the region will be used, which will be properly processed. This line will serve as a basis for comparison with the results obtained using both the transit time (Δt) recorded and its integration, in cases where they are generally not used, such as drilled wells for groundwater production.

However, seismic reliability data are not always available, either because of the poor quality of the acquisition (especially with very old lines) or because of the existence of very weathered layers, as in the case of this study. Therefore, this work reinforces the importance of obtaining a mapping through the Sonic curve for cases in which the seismic line is not of quality.

Sumário

R	esum	D	3
A	bstra	ct	4
In	trod	ıção	10
1	Car	acterização da área de estudo	11
	1.1	Localização	11
	1.2	Geologia	12
		1.2.1 Embasamento	13
	1.3	Sequências estratigráficas	14
2	Fun	damentos Teóricos	17
	2.1	Perfilagem	17
		2.1.1 Porosidade	17
		2.1.2 Permeabilidade	18
	2.2	Perfis Geofísicos de poços	18
		2.2.1 Raios Gama	18
		2.2.2 Perfil Sônico	20
		2.2.3 Cáliper	22
	2.3	Problemas com o Perfil Sônico	23
		2.3.1 Estiramento do tempo de trânsito ("Stretching")	23
		2.3.2 Saltos de ciclo ("Cycle skipping")	23
		2.3.3 Diâmetro do poço	23
		2.3.4 Efeitos do fissuramento radial ("Radial cracking effects")	24
	2.4	Métodos Sísmicos	25
	2.5	A perfilagem e a sísmica	27
	2.6	Determinação dos parâmetros elásticos da onda utilizando o Sônico	29

3	Met	todologia aplicada	30				
	3.1	Correlação	31				
	3.2	Seções	31				
	3.3	Cálculos realizados	34				
	3.4	Mapas	35				
	3.5	Dados sísmicos	39				
	3.6	Processamento de dados sísmicos	39				
		3.6.1 Pré-processamento	40				
		3.6.2 Processamento	41				
4	Con	nclusões	44				
A	grade	ecimentos	46				
A	Tab	oelas resumidas dos poços	47				
В	Cód	ligo utilizado no Python	54				
С	Cross-plot gráfico BHC x Cáliper 56						
R	e fer ê:	ncias	57				

Lista de Tabelas

3.1	Velocidades da camada B obtidas em cada poço e o erro relativo entre elas,	
	onde $V_2^* = 2V_2$	35
A.1	Poço 1 e 2	48
A.2	Poço 3 e 4	49
A.3	Poços 5 e 6	50
A.4	Poços 7 e 8	51
A.5	Poço 9 e 10	52
A.6	Poço 11	53

Lista de Figuras

1.1	Mapa do estado da Bahia. Em vermelho os municípios de Banzaê (menor) e	
	Cícero Dantas (na região superior)(adaptado da Wikipédia)	11
1.2	Rota preferencial partindo de Salvador rumo à cidade de Cícero Dantas e	
	Banzaê (retirado do Google Maps)	12
1.3	Mapa contendo as três sub-bacias do Tucano (modificado de Chang et al.	
	(1992)).	13
1.4	Carta estratigráfica. Em vermelho, formação Marizal/São Sebastião. (Peixi-	
	nho, 2017)	15
2.1	Ambientes sedimentares com base no perfil de Raios Gama (modificado de	
	(Nery, 2013))	19
2.2	Princípio da ferramenta do perfil Sônico (adaptado de petroblogger.com). $\ .$	20
2.3	Correção do Sônico devido à desmoronamentos no poço (adaptado de Goetz	
	et al. (1979))	22
2.4	Estiramento do Perfil Sônico (adaptado de Goetz et al. (1979)).	24
2.5	Salto de ciclo. Adaptado de Goetz, Dupal e Bowler (1979)	24
2.6	Efeitos do fissuramento radial, adaptado de Goetz et al. (1979). \ldots	25
2.7	Refração com ângulo rasante, modificado de Silva (2013)	27
2.8	Modelo convolutivo do traço sísmico, obtido a partir de uma função refleti-	
	vidade convolvida com um pulso sísmico. Os valores da impedância acústica	
	são extraídos a partir dos perfis sônico e de densidade. (Nery, 1990)	28
3.1	Fluxograma da metodologia aplicada no estudo	30
3.2	Mapa de localização dos poços estudados. Modificado do Google Maps	31
3.3	Correlação ao nível do mar dos poços 1 ao 6. Em marrom tem-se a altitude	
	de início da perfilagem (solo topográfico). Em verde o topo da camada A,	
	em amarelo o topo do folhelho F_1 e a base do F_2 , em vermelho o topo e base	
	da camada B e em azul o nível do mar (Escala vertical indicada no perfil;	
	Horizontal, sem escala).	32

3.4	Correlação ao nível do mar dos poços 7 ao 11. Em marrom tem-se a altitude	
	de início da perfilagem. Em verde o topo da camada A, em amarelo o topo	
	do folhelho F_1 e a base do F_2 , em vermelho o topo e base da camada B e em	
	azul o nível do mar. Notar a ausência da base da camada B nos poços 7,8	
	e 9 representada por uma linha tracejada (Escala vertical indicada no perfil;	
	Horizontal, sem escala).	33
3.5	Mapa topográfico da área estudada em coordenadas UTM	36
3.6	Velocidade da camada B em cada um dos poços, calculada com base na Eq.	
	2.4 para calcular a velocidade através do Tempo de Trânsito Integrado (Eixos	
	x e y em coordenadas UTM). \ldots	36
3.7	Profundidade do topo da camada B (Eixos x e y em coordenadas UTM). $\ .$.	37
3.8	Profundidade da base da camada B (Eixos x e y em coordenadas UTM). $\ .$.	37
3.9	Mapa da espessura da camada (Eixos x e y em coordenadas UTM). \ldots .	38
3.10	Mapa da CPRM Ribeira do Pombal contendo os poços 4, 5 e 6, mostrando	
	que eles estão localizados em vales. Modificado de (Santos et al., 2010). $$	38
3.11	Mapa da CPRM Cícero Dantas contendo os poços 7, 8, 9 e 10, mostrando que	
	os dois últimos estão em áreas de tabuleiros, mais alta. Modificado de (Santos	
	e Reis, 2011)	39
3.12	Fluxograma com as etapas aplicadas durante o processamento da Linha 0230	
	0593	40
3.13	Linha sísmica 0230-0593. Retirado do Google Maps em 05/07/2018 $\ .$	40
3.14	Tiro 250	42
3.15	Seção empilhada da linha 0230-0593	42
3.16	Mapa com o TTI da reflexão do topo do horizonte estudado (Eixos x e y em	
	coordenadas UTM)	43
B.1	Código do Python utilizado nos poços 1 a 6	54
B.2	Código do Python utilizado nos poços 7 a 11	55
C.1	Cross-plot do BHC.	56

Introdução

A perfilagem de um poço representa uma fase importante para a prospecção de fluídos de interesse da indústria, seja do petróleo, seja de água subterrânea. Essa etapa consiste, basicamente, na obtenção de dados petrofísicos (entre as quais a importante relação tempovelocidade aplicada neste trabalho), das formações rochosas em profundidade. Dados mais precisos a respeito da litologia, porosidade, geometria e conteúdo fluído existente em subsuperficie são igualmente calculados a partir da análise dos perfis geofísicos.

O perfil Sônico convencional (BHC -Bore Hole Compensated) é uma ferramenta da perfilagem que se baseia no estudo da propagação da onda acústica ao longo do poço. A velocidade de propagação de uma onda varia de acordo com o material o qual ela esteja atravessando. De uma forma geral, a velocidade nos sólidos é maior do que nos líquidos e gases. Essa diferença da velocidade de propagação nos fornece informações a respeito dos materiais constituintes das rochas em subsuperfície.

Outra forma de utilizar o perfil Sônico é através do TTI (Travel Time Integration) que consiste no somatório dos tempos de trânsitos registrados ao longo do poço, ou de uma camada de interesse, possibilitando a confeccção de mapas de horizontes presentes em vários poços de uma mesma região. Além disso, o perfil Sônico fornece dados para cálculos de velocidades intervalares e auxilio à sismogramas sintéticos. Esses mapas fornecem um melhor entendimento da disposição geológica das camadas e como algumas feições afetam os horizontes.

O estudo, aqui apresentado, será complementado com dados de linha sísmica adquirida na região, no sentido de mais uma contribuição para o estabelecimento de informações entre as correlações poço-sísmica. Porém, quando não se dispõe de dados sísmicos de qualidade, o estudo da subsuperfície pode ser dificultado, principalmente na indústria da água subterrânea onde é muito comum a ausência desses dados. Dessa forma, a confecção de mapas representando os horizontes em subsuperfície utilizando as curvas do perfil Sônico se torna uma ferramenta muito útil e eficaz para aperfeiçoar o estudo da área de interesse e isso é muito bem ilustrado nesse trabalho.

Capítulo 1

Caracterização da área de estudo

1.1 Localização

A área de estudo encontra-se no estado da Bahia na região próximo aos municípios de Cícero Dantas e de Banzaê (Figura 1,1). Geologicamente, está situada na Bacia do Tucano, subbacia do Tucano Central.

Figura 1.1: Mapa do estado da Bahia. Em vermelho os municípios de Banzaê (menor) e Cícero Dantas (na região superior)(adaptado da Wikipédia).

Ambas as cidades estão a uma distância de aproximadamente 330 km de Salvador. A menor rota, partindo da capital baiana, é através da BR-110 passando pelos municípios de Alagoinhas, Cipó e Ribeira do Pombal (Figura 1.2).

Figura 1.2: Rota preferencial partindo de Salvador rumo à cidade de Cícero Dantas e Banzaê (retirado do Google Maps).

1.2 Geologia

A bacia do Tucano é subdividida em três sub-bacias: A sub-bacia de Tucano Sul, Central e Norte. Esse conjunto de sub-Bacias faz parte do Sistema Rifte Recôncavo-Tucano-Jatobá. Estruturalmente, é um sistema de meio-grábens assimétricos, desconectados e limitados por zonas de transferências.

O Sistema de Rifte Recôncavo-Tucano-Jatobá constitui uma estrutura de *rift valley*, evoluída durante o Cretáceo inferior, e é interpretado como um braço abortado que originou o Atlântico Sul, relacionado à tectônica extensiva que afetou o paleocontinente Gondwana durante o Eocretácio (Neocomiano), sendo interrompida nesta região no Eoaptiano e originou a separação continental América do Sul da África (Ferronatto, 2013).

As sub-Bacias do Tucano Sul e Central têm como embasamento rochas do Cinturão Bahia Oriental da Província São Francisco, que compõem um sistema de rifte assimétrico com orientação geral N-S, com falhas de borda ao leste e margem flexural a oeste (Kosin, 2009).

Os poços estudados situam-se na sub-bacia do Tucano Central, a qual possui cerca de 14.700 km² em área, constituindo-se na maior sub-bacia da região. Encontra-se parcialmente separada de Tucano Sul pela zona de acomodação do rio Itapicuru e de Tucano Norte pela zona de acomodação do Vaza-Barris (Caixeta et al., 1994). Nessa última, se observa uma inversão na assimetria e na polarização do rifte. Além disso, é a região que limita as províncias do São Francisco e da Borborema, como mostra a Figura 1.3:

Figura 1.3: Mapa contendo as três sub-bacias do Tucano (modificado de Chang et al. (1992)).

1.2.1 Embasamento

As sub-Bacias do Tucano Sul e Central instalaram-se sobre a borda nordeste do Cráton do São Francisco, tendo como embasamento ortognaisses migmatíticos, a oeste-sudoeste e sudeste; rochas metavulcanossedimentares do Greenstone Belt do Rio Itapicuru, a oeste; metassedimentos da cobertura cratônica Estância, a noroeste e leste-nordeste; e rochas sedimentares da Bacia Palmares, a leste.

Os ortognaisses migmatíticos compreendem suítes ígneas de idade mesoarqueana a neo-arqueana (3.200-2.900 Ma), intrudidas por granitos e sienitos paleoproterozóicos (2.100-1.900 Ma). Associam-se ainda sequências supracrustais metamorfizadas em alto grau, depositadas em bacias rifte e de margem passiva.

O Greenstone Belt do Rio Itapicuru representa uma bacia de retro-arco paleoproterozóica (2.200-2.000 Ma) estando caracterizado por rochas metavulcânicas básicas e ácidas e metassedimentos epiclásticos, vulcanoclásticos e siliciclásticos, intrudidos por corpos graníticos-granodioríticos.

O Grupo Estância compreende rochas metassedimentares de baixo grau, relacionadas a uma bacia neoproterozóica (750-650 Ma) que se desenvolveu sobre o Cráton do São Francisco, em regime extensional a flexural-termal. Deformação e metamorfismo são incipientes devido à sua posição marginal em relação à tectônica compressiva que estruturou a Faixa de Dobramentos Sergipana.

A Bacia Palmares desenvolveu-se ao final da orogênese brasiliana, entre o Cambriano

e o Ordoviciano (500 Ma), tendo evoluído como uma bacia molássica de antepaís, instalada sobre a cobertura cratônica Estância (Costa et al., 2007).

1.3 Sequências estratigráficas

Devido às semelhanças no arcabouço estrutural e registros sedimentares entre as sub-bacias do Tucano Sul e Central, costumam ser retratadas em uma única carta estratigráfica. As rochas sedimentares que preenchem essas sub-bacias estão organizadas nos grupos Brotas, Santo Amaro, Ilhas e Massaracá, além das formações São Sebastião e Marizal (Santos et al., 2010).

Na carta estratigráfica na Figura 1.4, os autores dividem os pacotes sedimentares em quatro supersequências: Supersequência Paleozóica (Sequência Permiana), Supersequência Pré-Rifte (Sequência J20-K05), Supersequência Rifte (Sequência K10-K40) e Supersequência Pós-Rifte (K50).

Segundo Caixeta et al. (1994), as supersequências podem ser resumidas em:

• Supersequência Paleozóica

Representada pelos clásticos, carbonatos e evaporitos, de ambiente marinho restrito e nerítico das formações Curituba, Santa Brígida e Afligidos. Esta sequência possui uma distribuição ampla, alcançando as Bacias do Recôncavo e de Camamu. Estes estratos estão truncados por uma discordância regional que abrange o Permiano, todo o Triássico e parte do Jurássico, compondo um hiato de quase 100 M.a. Um evento desse porte pode advir de processos mantélicos, que soergueram a crosta antes da ruptura que resultaria na formação do Oceano Atlântico Sul.

• Supersequência Pré-Rifte

Equivale ao grupo Brotas e à formação Itaparica, presentes nas Bacias do Recôncavo, Tucano e Jatobá. Estes arenitos e folhelhos foram depositados por sistemas fluviais entrelaçados, com forte retrabalhamento eólico, e em lagos sob clima árido, do final do Jurássico ao inicio do Berriasiano. Nesta fase houve subsidência de porte relativamente pequeno. Sobre ela corre uma discordância de caráter regional, em parte marcada pelo retrabalhamento eólico dos sedimentos subjacentes.

- Supersequência Rifte
 - 1. Sequência K10: A primeira sequência inteiramente cretácica equivale à Formação Candeias, depositada em lagos distribuídos do Recôncavo a Jatobá e já associados aos falhamentos que caracterizam a fase Rift dessas bacias. Representa uma

Figura 1.4: Carta estratigráfica. Em vermelho, formação Marizal/São Sebastião. (Peixinho, 2017).

importante mudança climática, de árido para úmido. No Tucano e Jatobá essa sequência se caracteriza pela elevada proporção de arenitos.

- 2. Sequência K20: De idade aproximada Valanginiana, foi identificada nas Bacias do Recôncavo e Tucano Sul e inclui partes dos depósitos de leques deltaicos da Formação Salvador, dos arenitos fluviais Massaracá, dos deltas Ilhas e do lago Maracangalha. Pelo menos em parte da bacia seu topo é marcado por uma discordância erosiva.
- 3. Sequência K30-K40: Reúne as rochas Hauterivianas a Eoaptianas resultantes da atuação dos leques aluviais Salvador, dos sistemas fluviais Massaracá, dos deltas Pojuca e do lago Maracangalha. A evolução do rifte cessou quase que por completo no Eoaptiano, originando a discordância que coroa a Sequência K30.

• Supersequência Pós-Rifte

Resulta dos últimos espasmos dos riftes baianos, e equivale aos clásticos grossos neoaptianos da Formação Marizal, depositados por leques aluviais.

Capítulo 2

Fundamentos Teóricos

2.1 Perfilagem

A perfilagem geofísica é uma ferramenta de suma importância para o estudo das rochas em sub-superfície. Basicamente, se resume em fazer levantamentos de características petrofísicas das camadas abaixo da superfície por meio de um poço. É um método capaz de gerar perfis verticais integrando vários métodos geofísicos para proporcionar padrões para correlação entre poços vizinhos, confecção de mapas geológicos, definição da geometria dos corpos e ambientes de sedimentação.

As informações advindas dessa técnica geofísica podem ser no âmbito qualitativo ou quantitativo. Informações qualitativas são evidências visuais, como a litologia, tipo de fluído, fraturas, dentre outros. Já as informações quantitativas são as evidências numéricas como espessura das camadas, porosidades, resistividades, velocidades acústicas, densidade, volume de hidrocarbonetos móveis, teor de argilas, etc.

Dentre as principais propriedades petrofísicas fundamentais das rochas reservatório temse a porosidade e a permeabilidade, vez que ambas caracterizam a capacidade de armazenar e liberar fluídos dessas rochas.

2.1.1 Porosidade

É uma propriedade estatística definida como a razão entre o volume de espaços vazios (V_v) de uma rocha e o seu volume total (V_t) . Pode-se classificar resumidamente a porosidade da seguinte maneira:

• Porosidade primária ou deposicional: é aquela adquirida pela rocha durante o seu processo de formação (durante a deposição ou bioconstrução).

• Porosidade secundária ou pós-deposicional: é resultante de processos geológicos subsequentes à conversão dos sedimentos em rochas.

Um outro conceito de porosidade é o de *porosidade absoluta*, explicada anteriormente, e a *porosidade efetiva* que leva em conta apenas os vazios interconectados. Essa última é a de maior importância nos cálculos e interpretações dos perfis, já que é economicamente a mais interessante. A porosidade pode ser calcula pelos perfis Sônico e/ou radioativos induzidos (Densidade e Neutrônico) (Nery, 2013).

2.1.2 Permeabilidade

Esse conceito se baseia no experimento de Darcy (1856) que demonstrou que a vazão de água em um meio poroso era diretamente proporcional à área da seção transversal (A) do meio, à diferença de carga hidráulica entre dois pontos (Δh) e, inversamente proporcional, à distância percorrida pelo fluído (L) (Miranda, 2004).

$$Q = \frac{-kA(\Delta h)}{L},\tag{2.1}$$

onde k é a constante de proporcionalidade denominada de condutividade hidráulica. A condutividade hidráulica depende de várias características tanto do meio (permeabilidade intríseca, porosidade, tamanho, forma e arranjo ou distribuição dos grãos), como do fluido que preenche a formação (viscosidade e massa específica). A permeabilidade absoluta é a capacidade de fluxo de um fluído que satura 100% de seus poros interconectados e/ou fraturas. Já a permeabilidade efetiva é a capacidade de fluxo de um fluído na presença de outro qualquer (Nery, 2013).

2.2 Perfis Geofísicos de poços

A perfilagem geofísica é feita através da descida de equipamentos dentro do poço com o intuito de obter informações petrofísicas das camadas existentes. Esses dados podem ser de natureza elétrica (Potencial Elétrico e Resistividades), acústicas (Tempos de Trânsito), mecânicas (Cáliper) e radioativas (natural e induzidas, tais como o Densidade e Neutrônico). Nesse estudo, dada a sua natureza, foram utilizados apenas o Gama Natural e o Sônico, sendo que os demais serviram de apoio secundário.

2.2.1 Raios Gama

O perfil de Raios Gama, ou GR, mede a soma da radioatividade natural das rochas proveniente da presença dos elementos radioativos Tório(Th), Urânio (U) e Potássio $40(K^{40})$. Folhelhos possuem alta radioatividade devido principalmente à presença de Potássio 40 e alguma matéria orgânica, enquanto que os arenitos e calcários, na maioria das vezes, possuem baixa radioatividade. Dessa forma, o perfil de raios gama se torna uma ferramenta muito útil como indicador qualitativo e quantitativo da presença de argilas, permitindo, portanto, ao intérprete fazer a distinção entre folhelhos e os demais tipos litológicos.

• Interpretação qualitativa: O formato da curva de Raios Gamas além de indicar intervalos de folhelhos e não folhelhos, pode fornecer uma ideia do ambiente que ocorreu a deposição (Figura 2.1):

Figura 2.1: Ambientes sedimentares com base no perfil de Raios Gama (modificado de (Nery, 2013)).

 ◊ Um formato cilíndrico geralmente sinaliza ambientes com fácies sujeitas à transgressões: eólicos, canais fluviais, barras, cânions, plataformas carbonáticas e assemelhados, locais com bastante retrabalhamento capaz de deixar as camadas com granulação fina.

 \diamond Um formato de sino (baixa radioatividade no topo, alta na base) geralmente sinaliza ambientes progradantes.

 \diamond Um formato de funil (alta radioatividade no topo, baixa na base) geralmente sinaliza ambientes transgressivos.

• Interpretação quantitativa: Para uma avaliação quantitativa do volume de folhelho (VSH) no intervalo é necessário estabelecer o índice de radioatividade (IGR), que é uma normalização entre a leitura realizada no perfil com os valores máximos e mínimos observados:

$$IGR = \frac{GR - GR_{min}}{GR_{max} - GR_{min}},$$
(2.2)

onde GR é o valor lido no perfil, GR_{min} é o arenito mais limpo no intervalo e GR_{max} é o valor máximo médio dos folhelhos do intervalo analisado. Com o IGR em mãos, pode-se calcular o VSH utilizando a seguinte equação (Asquith e Krygowski, 2004):

$$VSH = \frac{IGR}{A_{GR} - (IGR \times (A_{GR} - 1))},$$
(2.3)

onde $A_{GR} = 2$ para rochas terciárias ou novas (não consolidadas) e $A_{GR} = 3$ para rochas mais velhas (ou consolidadas).

2.2.2 Perfil Sônico

O princípio do perfil sônico convencional, tem por base emissão de uma onda acústica por um transmissor no poço e que se espalha em todas as direções formando uma frente de onda compressional esférica. Essa frente de onda atravessa a parede do poço, penetra nas camadas de rocha e depois de um certo intervalo de tempo retorna, também de modo compressional, aos receptores. Os receptores, por sua vez, irão captar todo o trem de ondas, sendo que o registro é feito na chegada da primeira onda compressional refratada. A figura 2.2 ilustra como uma onda elástica se propaga a partir de um transmissor T, até ser captada pelos receptores (R1 e R2). O perfil sônico fornece o tempo, em microsegundo/pé (μ s/pé), de

Figura 2.2: Princípio da ferramenta do perfil Sônico (adaptado de petroblogger.com).

uma onda sonora em um determinado intervalo fixo, de modo que faz dele uma importante ferramenta para avaliação da porosidade e utilização como ferramenta de auxílio à sísmica, como será visto mais adiante. A velocidade de propagação do som varia de acordo com o meio por onde ele se propaga. Em meios fluídos, a velocidade é menor do que nos sólidos. Dessa forma, o tempo que a onda leva para percorrer um meio fluído é maior do que quando a onda percorre um meio sólido. É essa variação no tempo do percurso da onda que auxilia na interpretação do meio que envolve a camada de estudo. Devido a essa diferença de velocidade na propagação de acordo com o meio (em que leva em consideração as distâncias ou espaços percorridos em fluídos e grãos sólidos), o perfil Sônico é muito sensível aos desmoronamentos dos poços, em virtude de um longo trajeto na lama antes de atingir a parede do poço.

Para minimizar esses efeitos, as ferramentas são construídas com dois transmissores, um superior e outro inferior, e quatro (ou dois) receptores que operam alternadamente na obtenção de quatro tempos, cuja média aritmética dividida pela distância de 2 pés (que é a separação entre os detectores relativa a um dos transmissores) será o valor registrado. Essa configuração de dois ou quatro receptores é denominada de Perfil Sônico compensado pelo efeito do poço (BHC- Bore Hole Compensated Sonic Log) (Nery, 1990).

As ferramentas sônicas possuem internamente um sistema que realiza o somatório dos tempos registrados desde a profundidade final do poço até a base do revestimento, de superfície ou intermediários, imprimindo-os em traços de milissegundos cada ao longo do perfil.

Usa-se a integração do tempo de trânsito (TTI- Travel Time Integration) para se obter o tempo demandado para a onda atravessar um certo intervalo. Através do uso do TTI é possível, também, calcular a velocidade da camada por meio da seguinte equação:

$$V = \frac{e}{\mathrm{TTI}},\tag{2.4}$$

onde e é a espessura (m) do intervalo, ou camada escolhida, e o TTI em milissegundos.

Por ser um método não radioativo, o perfil Sônico é amplamente utilizado na indústria da água subterrânea para a determinação da porosidade. A correlação entre porosidade e tempo de trânsito foi estudada por Wyllie et al. (1956), que afirmaram que o tempo de trânsito é um valor médio ponderado entre os tempos dos elementos pertencentes à trajetória da onda. Com isso, o tempo de trânsito pode ser estimado com base na Lei das Misturas:

$$\Delta t = (1 - \phi)\Delta t_m + \phi \Delta t, \qquad (2.5)$$

e a porosidade obtida do Perfil Sônico (ϕ_s) da seguinte forma:

$$\phi_s = \frac{\Delta t - \Delta t_m}{\Delta t_f - \Delta t_m},\tag{2.6}$$

 Δt é o tempo registrado em perfil, Δt_m é o tempo estabelecido para a matriz sólida e Δt_f é o tempo do fluído que preenche o intervalo. Essa equação é conhecida como Equação de Wyllie.

2.2.3 Cáliper

O cáliper é uma ferramenta que dispõe de dois ou mais "braços" articulados que variam a sua abertura de acordo com o diâmetro do poço, sendo possível averiguar a existência de rugosidades e desmoronamentos. Tem a importância de informar as condições mecânicas do furo para melhoria dos cálculos interpretativos e para servir como uma ferramenta de controle da qualidade do Perfil Sônico. Deve-se observar as curvas tanto do Δt como do cáliper e verificar se os valores do primeiro (Δt) estão relacionados à anomalias no segundo (cáliper), de acordo com o espaçamento entre o transmissor e o receptor.

Figura 2.3: Correção do Sônico devido à desmoronamentos no poço (adaptado de Goetz et al. (1979)).

A Figura 2.3 mostra duas áreas de confiabilidade dos dados registrados, por meio das áreas demarcadas uma pela curva dos receptores 3-5 pés (BHC) e os eixos x-y e uma outra, mais superior, com os receptores 8 a 10 pés (LSS - Long Spacing Sonic), de frequência de 40 KHz, construída para dar maior penetração ao princípio sônico.

Na profundidade a analisar, caso as coordenadas dos valores do Δt do BHC e do diâmetro do poço mostrem que o ponto cai acima da área demarcada pelos receptores 3-5 pés, ele deve ser descartado por ter sido, provavelmente, grandemente influenciado pelo desmoronamento.

Por exemplo: para um poço com 12 polegas de diâmetro (a ferramenta tem aproximadamente 4 polegadas), deve-se considerar como válida as leituras da ordem de, no máximo, $160 \,\mu\text{s/pé}$.

Por outro lado, a ferramenta 8-10 pés (LSS), apresenta grande vantagem em relação ao BHC, em termos de penetração, todavia maior espaçamento entre fonte e os receptores significa que as primeiras chegadas podem ser mais atenuadas, sujeitas a ruídos e saltos de ciclo. Considerando-se igual diâmetro de 12 polegadas, a leitura máxima, para o LSS, será da ordem de 190 μ s/pé.

O apêndice C contém o cross-plot dos valores registrados no perfil sônico (eixo y) e o diâmetro (eixo x) dos poços utilizados nesse trabalho. Com esse cross-plot é possível notar que a maioria dos valores encontram-se na área de confiabilidade, com exceção de alguns trechos dos poços 2 e 10. Trazendo, com isso, confiabilidade nos cálculos e análises realizadas nesse trabalho.

2.3 Problemas com o Perfil Sônico

O Perfil Sônico, como dito anteriormente, mede o tempo que ondas compressionais levam para atravessar as formações. Dessa forma, alguns efeitos podem surgir e gerar valores anômalos na curva do perfil Sônico que não condizem com o esperado para a litologia e ocorrem devido às variações mecânicas do poço.

2.3.1 Estiramento do tempo de trânsito ("Stretching")

O som que chega ao segundo receptor (o mais distante do transmissor) percorrendo um caminho maior e, geralmente, a amplitude do sinal é mais atenuada. Como o detector está limitado a um certo valor de amplitude - "threshold"- (em milivolts) adotado pelo operador durante a descida, obedecendo a relação sinal-ruído, a detecção pode ocorrer tardiamente no receptor. Isso fornece um Δt maior do que o real, portanto valores de porosidade com ele calculado serão superestimados.

2.3.2 Saltos de ciclo ("Cycle skipping")

Em alguns casos, o sinal que chega ao receptor mais distante do transmissor é bastante atenuado para ser detectado na sua primeira chegada. A detecção ocorre no segundo ou terceiro ciclo de chegada do sinal, ou seja, saltam-se ciclos. Isso se mostra no perfil como aumentos abruptos e repentinos no intervalo do tempo de trânsito, conforme mostrado na Figura 2.5.

2.3.3 Diâmetro do poço

A influência do diâmetro do poço é também notada quando há desmoronamentos da parede do poço, observado pelo cáliper. Nesses casos, a primeira chegada pode ser a da onda que viajou através da lama.

Figura 2.4: Estiramento do Perfil Sônico (adaptado de Goetz et al. (1979)).

Figura 2.5: Salto de ciclo. Adaptado de Goetz, Dupal e Bowler (1979).

2.3.4 Efeitos do fissuramento radial ("Radial cracking effects")

Microfraturas na rocha, causadas pela perfuração, interligadas com fraturas radiais, podem aumentar o intervalo do tempo de trânsito devido ao preenchimento dessas fissuras pelo fluído da formação. Tal fato é observado mais facilmente quando se usa perfil de longo espaçamento denominado de LSS, conforme ilustra a Figura 2.6.

Figura 2.6: Efeitos do fissuramento radial, adaptado de Goetz et al. (1979).

2.4 Métodos Sísmicos

Os métodos sísmicos medem a velocidade com que uma onda acústica viaja pelo meio. As ondas são definidas por alguns parâmetros que são determinados pelas propriedades elásticas das rochas que, assim como todos os sólidos, obedecem a Lei de Hooke, que fornece a relação entre tensão e deformação. São esses parâmetros:

 Módulo de Young (E): é a razão entre a tensão e a deformação na mesma direção de atuação. Pode ser dado por:

$$E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu} \tag{2.7}$$

• Razão de Poisson (ν): razão entre a contração lateral e a extensão longitudinal:

$$\nu = \frac{\lambda}{2(\lambda + \mu)} \tag{2.8}$$

 Bulk Modulus (κ): é a razão entre a pressão aplicada e a mudança de volume quando o sólido é submetido a uma compressão hidrostática:

$$\kappa = -\frac{(2\mu + 3\lambda)}{3},\tag{2.9}$$

onde λ é o primeiro parâmetro de Lamè e μ é o módulo de cisalhamento ou segundo parâmetro de Lamè.

As ondas acústicas são caracterizadas pelos movimentos individuais de cada partícula do meio. As mais utilizadas na Geofísica são as ondas de corpo que são as ondas compressionais e as cisalhantes. Ondas compressionais (ondas P ou longitudinais): As partículas se movimento na mesma direção de propagação da onda. Além disso, é a única onda que se propaga em fluídos e possui maior velocidade, portanto é a que primeiro chega ao receptor. Sua equação é:

$$V_p = \sqrt{\frac{\kappa + (\frac{4}{3})\mu}{\rho}},\tag{2.10}$$

onde ρ é a densidade do meio.

• Ondas cisalhantes (ondas S ou transversais): As partículas se movimentam perpendicularmente à direção de propagação. Elas possuem velocidade de transmissão menor do que as ondas P e não são se propagam em fluídos. A sua velocidade é dada por:

$$V_s = \sqrt{\frac{\mu}{\rho}} \tag{2.11}$$

Além das ondas de corpo, há também as ondas de superfície, que como o próprio nome já diz, são transmitidas na superfície. Essas não costumam ter aplicações na perfilagem geofísica de poços.

A energia é transmitida em ambos os modos, tanto como onda P como onda S, porém as ondas cisalhantes possuem amplitude maior do que as ondas P, esse é um dos padrões que servem para a identificação do sinal que chega.

Utilizando-se um sistema de transmissores, ou as fontes sísmicas, com os receptores na superfície, é possível obter o tempo que leva para a onda atravessar o meio e atingir os receptores. A propagação das ondas sísmicas obedece a Lei de Huygens que estabelece que cada ponto da frente de onda se comporta como uma nova fonte de onda esférica. Com isso, quando a onda encontra uma interface que separa dois meios com velocidades distintas, parte da onda incidente será transmitida e parte será refletida e o ângulo com que ocorre essa mudança na direção é função da velocidade dos dois meios. Essa relação é obtida através da lei de Snell:

$$\frac{Sin\theta_1}{Sin\theta_2} = \frac{v_1}{v_2},\tag{2.12}$$

em que o índice 1 se refere ao meio em que a onda incide e o índice 2 ao meio que a onda chega.

◊ Método sísmico de refração

Quando uma onda passa de um meio com menor velocidade para um de maior, existe um ângulo de incidência (ângulo crítico) tal que o ângulo de transmissão é de 90° e a onda se propaga pela interface entre os meios; semelhante ao que ocorre com o perfil Sônico, daí o seu uso comparativo com a sísmica a ser válido. Portanto, nesse tipo de levantamento ocorre o registro da chegada das ondas refratadas. O princípio é ilustrado na Figura (2.7):

Figura 2.7: Refração com ângulo rasante, modificado de Silva (2013).

◊ Método sísmico de reflexão

Consiste na obtenção do registro sísmicos das ondas que incidem na camada e retornam para os geofones com ângulo de reflexão igual ao ângulo incidente. Amplamente utilizado na indústria atualmente, consegue alcançar grandes profundidades. Ocorre a reflexão sempre que a onda encontra um material cuja impedância acústica (que é a dificuldade que um material impõe à passagem do som) seja diferente da anterior.

A impedância acústica (Z) é a oposição de um meio á movimentação e uma onda longitudinal, caracterizada pela relação entre a pressão do som e a velocidade da partícula, e pelo meio em si.

$$Z = \rho \times v, \tag{2.13}$$

onde ρ é a densidade (Kg/m³) e v é a velocidade (m/s) do meio.

Através da impedância acústica é possível se obter o coeficiente de reflexão, que representa a capacidade de reflexão de uma interface e é dado por:

$$R = \frac{Z_2 - Z_1}{Z_2 + Z_1}.$$
(2.14)

Se R for positivo, significa dizer que uma rocha de baixa velocidade sobrepõe uma de alta velocidade, mais compacta;

Se R for negativo, significa dizer que uma rocha de alta velocidade sobrepõe uma de baixa velocidade, menos compacta;

2.5 A perfilagem e a sísmica

A importância das Eqs. 2.13 e 2.14 está na construção do sismograma sintético que representa o resultado de uma modelagem da resposta sísmica em uma região. Esse procedimento é realizado com a velocidade calculada com o perfil Sônico e utilizando-a para o cálculo da impedância acústica para, com isso, encontrar o coeficiente de reflexão. Tendo em mãos essas duas variáveis, obtém-se a função refletividade, a qual será convolvida com o pulso sísmico (obtido matematicamente) para, finalmente, obter-se o traço sísmico (conjunto de valores verticais de amplitude). Esse procedimento é ilustrado na Figura 2.8:

Figura 2.8: Modelo convolutivo do traço sísmico, obtido a partir de uma função refletividade convolvida com um pulso sísmico. Os valores da impedância acústica são extraídos a partir dos perfis sônico e de densidade. (Nery, 1990).

A construção do sismograma sintético tem a finalidade de permitir a amarração entre os dados de poço e as seções sísmicas para uma interpretação sísmica mais precisa. Além disso, serve para controlar a qualidade do traço sísmico (identificar e retirar com mais precisão as múltiplas) e avaliar a perda de transmissão, ou seja a atenuação que a onda acústica sofreu. Essa atenuação pode ser dada por:

$$T = 1 - R^2, (2.15)$$

onde T é a perda por transmissão e R é a refletividade da onda acústica.

Se a área tiver outros poços é possível aplicar essa técnica em todos eles para avaliar as variações de sismofácies associadas à interfaces estudadas. Desta forma, pode-se também classificar essas sismofácies.

O sismograma sintético serve como ferramenta durante a fase de processamento sísmico, pois pode ajudar na avaliação da eficiência de etapas como a deconvolução ou no tratamento de amplitudes.

2.6 Determinação dos parâmetros elásticos da onda utilizando o Sônico

Com base nas velocidades das ondas P e S obtidas com o perfil Sônico é possível obter a densidade da rocha e, com isso, obter os parâmetros elásticos da onda usando as seguintes equações descritas por Kowalski et al. (1975):

1. Módulo de Young (E):

$$E = \left[\frac{\rho}{(\Delta t_T)^2}\right] \times \left[\frac{3(\Delta t_T)^2 - 4(\Delta t_L)^2}{(\Delta t_T)^2 - (\Delta t_L)^2}\right] \times 1.34 \times 10^{10} psi$$
(2.16)

2. Bulk Modulus (κ):

$$\kappa = \rho \times \left[\frac{3(\Delta t_T)^2 - 4(\Delta t_L)^2}{(3\Delta t_T)^2 - (\Delta t_L)^2}\right] \times 1.34 \times 10^{10} psi$$
(2.17)

3. Módulo de cisalhamento (μ):

$$\mu = \frac{\rho}{(\Delta t_T)^2} \times 1.34 \times 10^{10} psi \tag{2.18}$$

4. Razão de Poisson (ν):

$$\nu = \frac{1}{2} \times \left(\frac{(\Delta t_T)^2 - 2(\Delta t_L)^2}{(\Delta t_T)^2 - (\Delta t_L)^2}\right),\tag{2.19}$$

onde os termos Δt_T e Δt_L é o tempo registrado pela onda transversal e longitudinal, respectivamente.

Capítulo 3

Metodologia aplicada

O fluxograma (Figura 3.1) abaixo mostra as etapas aplicadas sequencialmente no presente trabalho.

Figura 3.1: Fluxograma da metodologia aplicada no estudo.

3.1 Correlação

Os poços estudados na região estão distribuídos como mostra a Figura 3.2 :

Figura 3.2: Mapa de localização dos poços estudados. Modificado do Google Maps.

Para se obter informações pertinentes a respeito das camadas em subsuperfície, é interessante realizar a correlação entre os poços, ou seja, interliga-los de acordo com as camadas semelhantes que possuam em comum. Como critério, foi utilizado no desenvolver do trabalho a curva Δt juntamente com a de Raios Gama. Buscou-se nessas curvas similaridades entre todos os poços analisados. Para facilitar os estudos, dividiu-se esses poços em dois grupos de acordo com na localização geográfica dos mesmos. Numera-se um grupo de 1 a 6 e outro de 7 a 11. A partir disso, é necessário observar as curvas e suas mudanças abruptas em comum para delimitar as prováveis áreas de interesse. Para isso, foi observado o comportamento do perfil GR e do Sônico para, assim, notar a existência de uma camada de interesse e comum em todos os poços. Desta forma, interligou-se os intervalos onde os valores de ambos os perfis estivessem aproximadamente constantes e, desde que o GR marcasse baixa radioatividade (arenitos).

3.2 Seções

Utilizou-se o script escrito em Python para ordenar os poços e correlacionar as camadas de acordo com a altitude em relação ao nível do mar em que se encontravam.

Nas Figuras 3.3 e 3.4, foi possível se notar uma camada arenosa em verde intitulada de "A". Acima dela, temos um material em que o perfil Sônico varia muito, tendo influencia do ar, ou nível estático, e portanto é uma camada areada com materiais não consolidados.

Figura 3.3: Correlação ao nível do mar dos poços 1 ao 6. Em marrom tem-se a altitude de início da perfilagem (solo topográfico). Em verde o topo da camada A, em amarelo o topo do folhelho F_1 e a base do F_2 , em vermelho o topo e base da camada B e em azul o nível do mar (Escala vertical indicada no perfil; Horizontal, sem escala).

Abaixo da camada A tem uma camada de folhelhos identificada de amarelo como " F_1 ". Sotoposta a F_1 , aparece, em vermelho, a camada B que foi o alvo do estudo nesse trabalho. Por último, uma camada de folhelhos, em amarelo, denominada de " F_2 ". A correlação foi

Figura 3.4: Correlação ao nível do mar dos poços 7 ao 11. Em marrom tem-se a altitude de início da perfilagem. Em verde o topo da camada A, em amarelo o topo do folhelho F_1 e a base do F_2 , em vermelho o topo e base da camada B e em azul o nível do mar. Notar a ausência da base da camada B nos poços 7,8 e 9 representada por uma linha tracejada (Escala vertical indicada no perfil; Horizontal, sem escala).

interrompida abaixo de F_2 porque não foi possível identificar uma nova camada na Figura 3.4 pois, em alguns poços (7 a 9), a perfilagem chegou ao fim no meio de um outro estrato, dificultando a correlação, por isso a base da camada foi representada de forma tracejada.

3.3 Cálculos realizados

Dado o bom contraste de Δt e consistência em seu valor ao longo da camada B, ela foi escolhida para a apresentação desta metodologia. Inicialmente, calculou-se a sua velocidade utilizando a fórmula:

$$V_1 = \frac{1 \text{ pé}}{\Delta t(\mu s/p\acute{e})},\tag{3.1}$$

onde 1 pé (que deverá ser convertido em metros, correspondendo, portanto a 0,3048 m) é a resolução vertical da ferramenta e o Δt é a média do tempo lido na camada, em microssegundo/pé que deve ser convertido em segundos ao multiplicar toda a equação por 10⁶, desta forma a velocidade encontrada ficará em m/s.

Uma vez que os poços para água subterrânea não constam necessariamente da integração interna das operações de perfilagem, pelo fato de a indústria não ser usuária contumaz da sísmica em seus trabalhos de prospecção, e sim da eletrorrestividade, calcula-se o TTI analisando o somatório dos valores registrados pelo perfil Sônico na camada.

Tendo em mãos o TTI, é necessário um segundo cálculo da velocidade (V_2) para a mesma camada, para fins de comparação entre os métodos, usando-se a Eq. 2.4. Essa última, deverá ser convertida em m/s trocando a espessura *e* de pés para metro (multiplicando por 0,3048) e multiplicar toda a equação por 10³ para que o TTI (dado em milissegundos) fique em segundos. Desta forma, ambas as equações ficam com as mesmas unidades, podendo,assim, serem comparadas, como no exemplo abaixo:

$$V_2 = \frac{0,3048\,m}{10^3\,s} \tag{3.2}$$

Todos os resultados foram plotados na tabela 3.1:

Poço	$\mathbf{V}_1~(\mathrm{m/s})$	\mathbf{TTI}	$\mathbf{V}_2~(\mathrm{m/s})$	$\mathbf{V}_{2}^{*} \; (\mathrm{m/s})$	Erro (%)
Poço 1 (Major)	2911,2	$27839,\!3$	$1434,\!3$	$2868,\!5$	1,5
Poço 2 (Serrão)	$2931,\!9$	$37640,\!2$	$1453,\!5$	$2907,\! 1$	0,8
Poço 3 (Juá 1)	2716,5	$18341,\! 6$	$1354,\!4$	2708,7	0,3
Poço 4 (Juá 2)	2736,2	$40275,\!3$	$1362,\!2$	$2724,\!4$	0,4
Poço 5 (Itaparica)	2792,4	$40704,\!4$	$1347,\!9$	2695,7	3,5
Poço 6 (SJ da Fortaleza)	$2803,\!9$	94474,9	$1398,\! 6$	$2797,\!2$	0,2
Poço 7 (Tubarão)	2883,0	$95310,\!1$	1436,7	2873,4	0,3
Poço 8 (Melo)	2873, 1	$78825,\!6$	$1424,\!9$	$2849,\!8$	0,8
Poço 9 (Boqueirão)	$2964,\! 6$	$55176,\!3$	$1474,\!9$	$2949,\!9$	0,5
Poço 10 (Trindade)	2528,5	57774,7	$1210,\!8$	$2421,\!5$	4,2
Poço 11 (Estrelo)	2139,5	$65180,\!5$	1070,2	$2140,\!3$	$0,\!0$

Tabela 3.1: Velocidades da camada B obtidas em cada poço e o erro relativo entre elas, onde $V_2^* = 2V_2$.

Considerando-se que o tempo sísmico é o dobro do tempo calculado pelo TTI (Tempo de Trânsito Integrado), por isso $V_{2}*=2V_{2}$, calculado, se faz necessário o cálculo da velocidade utilizando as duas Eqs. 3.1 e 2.4 para garantir um controle de qualidade da integração e, consequentemente, das velocidades calculadas. Comparando-se os valores de velocidade obtidas pelas duas equações, verifica-se que o erro médio foi de 1,37%, o que valida a metodologia como aceitável para este tipo de trabalho, pois está dentro do erro máximo admitido que é de até 10%.

3.4 Mapas

Os mapas utilizados no trabalho foram confeccionados utilizando-se o software SURFER da Golden software.

No mapa topográfico (Figura 3.5), pode-se notar a existência de um padrão de curvas que possibilita inferir que há um falhamento dividindo a região em dois blocos: um contendo os poços 1-8 e outro 9-11. O poço 11 se destaca devido à altitude em que se encontra em relação aos demais.

Com os dados das velocidades estimadas de uma ou mais camadas em função das integrações dos tempos registrados, é possível elaborar mapas de contorno 2D das velocidades para cada camada de interesse (Figura 3.6).

Figura 3.5: Mapa topográfico da área estudada em coordenadas UTM.

Figura 3.6: Velocidade da camada B em cada um dos poços, calculada com base na Eq. 2.4 para calcular a velocidade através do Tempo de Trânsito Integrado (Eixos x e y em coordenadas UTM).

Nesse mapa foi utilizada a velocidade V_2^* e é possível notar um certo padrão na variação da velocidade. Nos poços 1 a 6, nordeste, tem-se valores próximos um do outro o que pode indicar que há uma certa homogeneidade no comportamento estrutural litológico nas camadas ao longo desse intervalo, no qual poderiam ser incluídos os poços 7, 8 e 9 dentro desse padrão, enquanto que os poços 10 e 11 as variações podem sinalizar irregularidades na geologia como, por exemplo, outros blocos estruturais.

Para uma visão mais detalhada das variações que ocorrem na camada foram feitos mapas da profundidade do topo e da base respectivamente (figura 3.7 e 3.8).

Os poços 7,8 e 9 não constam na Figura 3.8 porque atingiram a sua profundidade final

Figura 3.7: Profundidade do topo da camada B (Eixos x e y em coordenadas UTM).

Figura 3.8: Profundidade da base da camada B (Eixos x e y em coordenadas UTM).

antes de alcançar a base da camada, portanto não se tem dados confiáveis a respeito dessa profundidade. Ainda assim, é possível notar, nas Figuras 3.7 e 3.8, que continua a se repetir um padrão existente no mapa topográfico, e que os primeiros 6 poços, que são relativamente mais profundos do que os demais poços.

A Figura 3.9 informa a espessura da camada de estudo com a finalidade de ter uma melhor compreensão de como ocorre a variação da espessura. Deve-se chamar a atenção para os valores de espessura nos poços 7, 8 e 9 que, como dito anteriormente, a perfilagem chegou ao fim antes da base camada e, portanto, é um valor aproximado.

Com isso, nota-se que os poços 1 a 5 são menos espessos do que os demais. Esse padrão é semelhante ao que ocorreu nos outros mapas, ou seja, os poços do lado direito possuem um comportamento distinto dos poços do lado esquerdo do mapa.

Figura 3.9: Mapa da espessura da camada (Eixos x e y em coordenadas UTM).

Após fazer a análise desses mapas, pode-se notar que há coerência entre os resultados obtidos nos mapas confeccionados e o mapa geológico da CPRM nas Figuras 3.10 e 3.11:

Figura 3.10: Mapa da CPRM Ribeira do Pombal contendo os poços 4, 5 e 6, mostrando que eles estão localizados em vales. Modificado de (Santos et al., 2010).

Nesses mapas, pode-se perceber a existência de falhas na região ao norte do poço 5, a leste do 6 e nas proximidades dos poços 7 a 10, assim como nos mapas das Figuras 3.6, 3.7 e 3.8 que foi observado a quebra dos padrões de comportamento.

Figura 3.11: Mapa da CPRM Cícero Dantas contendo os poços 7, 8, 9 e 10, mostrando que os dois últimos estão em áreas de tabuleiros, mais alta. Modificado de (Santos e Reis, 2011).

3.5 Dados sísmicos

A única linha fornecida pela ANP foi a de número 0230-0593, em verde na Figura 3.13, relativamente distante dos poços trabalhados, foi projetada com um arranjo do tipo *Endon* que consiste basicamente em ter a fonte em uma extremidade e os receptores ordenados apenas em um de seus lados. Segundo o relatório do observador, essa aquisição possui afastamento minimo entre fonte e receptor (offset) de 100 m, e distância entre receptores de 50 m.

3.6 Processamento de dados sísmicos

Uma vez feita a aquisição dos dados sísmicos é necessário realizar o tratamento dos mesmos para melhorar a sua qualidade e a interpretação. Esse passo foi feito utilizando o pacote de processamento do software *Seisspace* desenvolvido pela *Landmark Graphics Corporation*.

O tratamento consiste em duas etapas, uma de pré-processamento e outra do processamento propriamente dito. As etapas aplicadas no processamento foram indicadas no fluxograma da Figura 3.12.

Figura 3.12: Fluxograma com as etapas aplicadas durante o processamento da Linha 0230-0593.

Figura 3.13: Linha sísmica 0230-0593. Retirado do Google Maps em 05/07/2018

3.6.1 Pré-processamento

Essa etapa consiste basicamente no preparo dos dados para utilização dos mesmos no *Seisspace*.

Leitura dos dados - Nem sempre os dados fornecidos encontram-se num formato compatível com o do programa que será utilizado, sendo necessário, portanto, que os dados sejam convertidos num formato compatível. No caso desse trabalho, os dados já se encontravam no formato compatível com o *Seisspace*, que é o SEG-Y.

- Geometria Nessa parte serão inclusos informações a respeito da aquisição, tais como coordenadas do tiro e do receptor, organização de um único tiro em vários receptores (familías CMP - Common Media Point), afastamento fonte-receptor (off-set).
- Edição Busca-se retirar os traços com baixa razão sinal-ruído devido ao desligamento ou problemas em algum geofone ou alguma interferência causada por alguma linha de transmissão nas proximidades da aquisição. Deve ter cuidado para não retirar traços que contenham informações importantes.
- Mute Elimina o ruído existente no inicio dos traços sísmicos causados por pequenos erros ou movimentos durante a aquisição. é realizado através de "picks" (pontos selecionados) que determinam a fronteira do sismograma.
- **Correção de amplitude** Recupera as amplitudes que foram atenuadas devido à divergência esférica, absorção e dispersão.

3.6.2 Processamento

- **Correção estática de refração** Corrige as diferenças de tempo na chegada das ondas refletidas devido à variações topográficas da superfície e à zona de intemperismo (ou zona de baixa velocidade -ZBV).
- Balanceamento espectral A técnica do balanceamento espectral é útil na atenuação de ruídos sísmicos de alta energia, portanto dos groundroll (ruído causado pela detonação da fonte que gera ondas Rayleigh que são captadas pelos geofones).
- Análise de velocidades Estimativa da velocidade das camadas em subsuperfície e de grande importância para a qualidade da seção empilhada. É realizada através da análise da coerência do sinal, dentro de uma janela de tempo, para cálculo do espectro de velocidade ao longo da trajetória dos eventos de reflexão.
- **Correção Normal Move-Out (NMO)** Deve-se considerar o modelo de camadas planoparalelas e efeutar a correção do atraso das reflexões devido ao afastamento fontereceptor em relação ao tempo de incidência normal da onda.
- **Empilhamento** Soma os traços após a correção NMO dentro do CDP (Commom Depth Point - Quando as camadas são consideradas plano-paralelas e sem variação lateral de velocidade, há um ponto comum em profundidade).

Durante o processamento, notou-se que a linha obtida através da ANP estava muito ruidosa e difícil de enxergar reflexões, como pode-se perceber na Figura 3.14:

Figura 3.14: Tiro 250.

Dessa forma, apesar de se testar diferentes técnicas de filtragem, nenhum resultado muito diferente do da Figura 3.15 foi obtido. Isso se deu devido à quantidade de ruídos, muito provavelmente, por causa da camada intempérica existente na parte mais superficial. Além disso, as Figuras 3.10 e 3.11 mostram que nas localidades dos poços demarcados ocorrem depósitos aluvionares, com muitos cascalhos, seixos e blocos que sofrem a ação fluvial.

Figura 3.15: Seção empilhada da linha 0230-0593.

Na Figura 3.15, foi possível notar o embasamento, em aproximadamente 1500 ms. Essa conclusão foi com base no forte contraste existente nessa região da seção sísmica.

Para finalizar, foi confeccionado o mapa da Figura 3.16 com base no TTI partindo-se da superfície até o topo da camada, multiplicado por dois (o que corresponderia ao percurso da onda compressional que parte do transmissor, reflete no topo da camada estudada e retorna o receptor).

Figura 3.16: Mapa com o TTI da reflexão do topo do horizonte estudado (Eixos x e y em coordenadas UTM).

É possível notar nesse mapa que os poços 10 e 11 possuem um valor menor de TTI, o que condiz com os resultados obtidos nos mapas anteriores já que indica que essa região encontra-se mais elevada do que as demais. Além disso, o poço 6 se encontra mais "destacado" em relação ao demais, com um TTI maior, isso ocorre devido a esse mesmo poço estar na região mais baixa (como mostra a Figura 3.5), ou seja, o percusso percorrido pela onda compressional é maior, necessitando de um tempo também maior para alcançar o topo do horizonte e retornar.

Tendo em mãos os valores do dobro do TTI é possível comparar com o valor de tempo registrado da seção sísmica da Figura 3.15 e identificar a possível camada.

No caso desse estudo, o TTI médio (calculado através da média aritmética) obtido foi de 370,11 ms, é necessário buscar na seção sísmica esse valor e procurar algum refletor que indique a presença dessa camada. Porém, não foi possível estabelecer essas correlações no trabalho, onde apenas o embasamento é notável na seção sísmica, não havendo nenhum refletor confiável, principalmente na zona que se encontra o valor médio obtido com a curva do Sônico do topo da camada alvo do estudo, mostrado no mapa da Figura 3.16.

Capítulo 4

Conclusões

Nesse trabalho foram utilizados os perfis Sônico, Cáliper e o Raios Gama com o intuito de correlacionar os poços e mapear um horizonte permoporoso com base no Tempo de Trânsito Integrado. Os poços são pertencentes à Bacia do Tucano Central, que se encontra no estado da Bahia, próximos à cidade de Cícero Dantas.

A partir desses perfis, foi feita a correlação entre os poços e a definição de um horizonte mapeável. Em seguida, foram confeccionados mapas de velocidade (com base no tempo de trânsito integrado), do tempo de reflexão do topo, profundidade do topo e da base, espessura, além do mapa de altitude, em relação ao nível do mar, da camada alvo do estudo. Com esses mapas, foi possível entender melhor a dinâmica em subsuperfície através de padrões de comportamento do horizonte entre os poços. A metodologia aplicada na confecção desses mapas se mostrou adequada, trazendo certa coerência nos resultados obtidos com a perfilagem dos poços.

Ao observar todos os mapas em conjunto, nota-se um padrão de semelhança nas características dos poços que vão do 1 ao 9 e outro comportamento distinto nos poços 10 e 11. Conclui-se que esses padrões podem ser resultantes de falhamentos existentes na região, que refletem diretamente na posição do horizonte estudado, dado ao comportamento topográfico dos dois modelos: um de vale e o outro de chapada. Ao comparar os resultados obtidos nos mapeamentos realizados com o mapa geológico, observa-se que, de fato, há a existência de algumas falhas que condizem com a posição das anomalias nos mapas. Portanto, isso reforça a coerência no método aplicado que, por sua vez, deixa mais perceptível como esses falhamentos atuam nas camadas em subsuperfície. Essas falhas são importantes feições hidrogeológicas que funcionam como meios propícios à condução de fluídos ou também como barreiras, ainda mais quando situadas em arenitos porosos, como os da formação São Sebastião/Marizal, presentes na região.

Os levantamentos sísmicos, ganharam muito espaço nas últimas décadas devido à re-

solução obtida através deles. Dessa forma, é possível aproveitar a quantidade de dados de perfil Sônico existentes na bacia para utilizar como ferramenta de auxílio aos métodos de sísmica rasa, em trabalhos futuros, para uma melhor precisão nos resultados. Porém, o método sísmico é um método caro e, portanto, não costuma ser utilizado na indústria da água subterrânea. Dessa forma, o emprego do perfil sônico no mapeamento de horizontes na subsuperfície pode ser visto como uma alternativa mais barata em eventuais prospecções de sísmica rasa.

Esse fato foi constatado nesse trabalho através da linha sísmica adquirida. Essa linha, uma das poucas existentes na região, estava muito ruidosa e mesmo após todas as etapas do processamento não foi possível identificar refletores aceitáveis, que não o embasamento. Isso se deve, muito provavelmente, à existência de uma camada intempérica, aliada ao baixo nível freático, no bloco em que a linha foi realizada, e que foi responsável pela forte atenuação das ondas e também devido à linha ser relativamente antiga, de uma época que as técnicas de aquisição não tinham tanta qualidade ainda. A camada intemperizada também registrada nos perfis dos poços, impossibilitou a correlação e eventual definição de outras camadas acima do horizonte alvo do estudo. Contudo, é possível estimar a profundidade do embasamento, observado na Figura 3.15, com base no perfil Sônico. Considerando o intervalo de tempo onde não se tem dados de perfil Sônico como sendo a partir do valor médio do tempo obtido no mapa da Figura 3.16 (370 ms) até o Δt do embasamento (1500 ms), tem-se um valor de aproximadamente 1130 ms. Estimando-se uma porosidade média de 20% nesse intervalo e que ela se mantém constante, utiliza-se a equação de Wyllie para obter a velocidade desse intervalo como sendo de aproximadamente, 3758,06 m/s. Com isso, a profundidade do embasamento é de, aproximadamente, 2100 m.

É importante reafirmar, portanto, que o perfil Sônico é muito sensível à variações que podem ocorrer no poço e que ao utiliza-lo com o intuito de mapear horizontes, deve-se levar em consideração os fatores que levam a essa alteração e buscar corrigi-los. Dessa forma, o perfil Sônico se torna uma ferramenta confiável e muito útil na indústria, principalmente se não houverem dados sísmicos ou os mesmos estiverem com baixíssima qualidade.

Agradecimentos

Primeiramente agradeço a Deus e a Nossa Senhora Aparecida por ter me dado forças para finalizar essa etapa da minha vida. Agradeço também ao meu pai e a minha mãe que a vida inteira batalharam muito para que hoje eu conseguisse chegar até aqui. Apesar de meu pai não estar mais entre nós para me ver realizar o maior sonho dele, busquei ser forte para concluir e poder dedicar esse momento a ele. Sei que onde quer que esteja, estará muito orgulhoso. Quanto à minha mãe, agradeço a ela também que se encontra muito feliz e realizada por essa etapa concluída. E aos meus dois avôs por todo o carinho.

Às minhas amigas de infância, Carol (e à sua família s2) e Miga, Laricão, por todo o suporte, por toda a força, pelos momentos de risada e por aguentar os momentos de choro também. Ao Mateus Maia por toda a força, todo o carinho e a paciência e por ter feito essa graduação melhor (mas se fizer pergunta na apresentação irei retirar daqui), ao Geofamily (e à Hellen), que de fato, todos ali são parte da minha família e levarei para sempre em meu coração e em minha memória as histórias maravilhosas (e algumas adilsonestidades) que vivemos ao longo desses anos. Por fim, mas não menos importante, ao RD um grupo bem diferente entre si, que praticamente só tem em comum o fato de gritar muito quando se junta e espalha a felicidade para todos ouvirem.

Agradeço à todos que de alguma forma me ajudaram nesse TCC (Wilker, Deniels, o prof. Michelângelo, Prof. Hedison Sato, Léo Barril...), principalmente a Vini que abusei da sociedade e salvou inúmeras vezes o meu PC de morrer.

Obrigada ao Professor Girão por ter aceitado ser meu orientador, pela paciência ao longo desses semestres e ter me ensinado bastante. E agradeço aos professores que aceitaram fazer parte da banca! À CERB (Companhia de Engenharia Hídrica e de Saneamento da Bahia) e à Hydrolog Serviços de Perfilagem Ltda que gentilmente cederam os dados dos poços para esse trabalho.

À todos, muito obrigada!

Apêndice A

Tabelas resumidas dos poços

As tabelas a seguir mostram a organização dos valores LAS* usados para calcular V_1 , V_2 , V_2^* e o TTI. Os resultados obtidos foram colocados na tabela 3.1.

Tabela A.1: Poço 1 e 2

Poço 1					Poço 2			
	Depth	DT	Cal	GR	Depth	DT	Cal	GR
	185,0136	116,258	$12,\!8291$	61,6048	180, 1368	108,7855	49,3669	$13,\!3513$
	$185,\!166$	$112,\!1807$	$13,\!1679$	$57,\!1169$	$180,\!2892$	$108,\!0852$	$51,\!3017$	$13,\!3874$
	$185,\!3184$	112,4687	$13,\!95365$	51,7385	$180,\!4416$	107,1078	47,7207	$13,\!4414$
	$185,\!4708$	$112,\!14$	$14,\!0499$	$45,\!2468$	$180,\!594$	$106,\!0403$	$43,\!9085$	$13,\!4718$
	$185,\!6232$	$112,\!9739$	12,7367	$39,\!1968$	180,7464	105, 1356	$43,\!0066$	$13,\!4718$
	185,7756	$113,\!6443$	12,51125	$34,\!9611$	$180,\!8988$	104,5616	43,5808	$13,\!4597$
	$185,\!928$	$110,\!9997$	12,503	31,7607	$181,\!0512$	$104,\!3601$	44,2207	$13,\!4588$
	$186,\!0804$	$109,\!0385$	$12,\!49215$	$30,\!48$	181,2036	104,5015	$42,\!0456$	$13,\!4767$
	$186,\!2328$	$114,\!4632$	$12,\!48815$	$30,\!7735$	$181,\!356$	$104,\!9278$	38,7265	$13,\!4868$
	$186,\!3852$	$117,\!6821$	$12,\!49895$	$31,\!3815$	181,5084	$105,\!5405$	$38,\!5394$	$13,\!4779$
	$186,\!5376$	$117,\!6704$	$12,\!4966$	$32,\!2788$	$181,\!6608$	$106,\!1935$	$39,\!8749$	$13,\!4756$
	$186,\!69$	$115,\!4113$	$12,\!5362$	$32,\!5698$	$181,\!8132$	106,7268	$42,\!5843$	$13,\!4766$
	$186,\!8424$	$110,\!8601$	$12,\!4691$	$30,\!5481$	$181,\!9656$	$107,\!0163$	47,1711	$13,\!4663$
	$186,\!9948$	$112,\!9008$	$12,\!4474$	$27,\!3627$	182,118	$106,\!9969$	47,7786	$13,\!4662$
	$187,\!1472$	$114,\!9336$	$12,\!48815$	$25,\!0909$	$182,\!2704$	$106,\!6574$	$43,\!6053$	$13,\!4797$
	$187,\!2996$	$115,\!1191$	$12,\!47145$	25,23	$182,\!4228$	$106,\!0232$	$39,\!8744$	$13,\!4801$
	$187,\!452$	$116,\!4768$	$12,\!49125$	26,569	$182,\!5752$	$105,\!1426$	$39,\!0175$	$13,\!4667$
	$187,\!6044$	114,7048	$12,\!5107$	$27,\!0978$	182,7276	$104,\!0957$	40,1809	$13,\!4648$
	187,7568	$116,\!0163$	$12,\!4981$	$26,\!3536$	182,88	$103,\!0217$	41,7356	$13,\!4729$
	$187,\!9092$	$118,\!872$	12,50615	$25,\!255$	$183,\!0324$	$102,\!1263$	$39,\!6512$	$13,\!4569$
	188,0616	117,2187	$12,\!5207$	25,7762	183, 1848	$101,\!6208$	33,7238	$13,\!4219$
	$188,\!214$	$114,\!8553$	$12,\!5936$	$27,\!3898$	$183,\!3372$	$101,\!6071$	29,4642	$13,\!3986$
	$188,\!3664$	$115,\!3226$	12,57505	$27,\!6576$	$183,\!4896$	$102,\!0035$	28,4662	$13,\!3913$
	188,5188	$113,\!1371$	$12,\!4873$	$27,\!3751$	$183,\!642$	$102,\!6014$	29,7337	$13,\!3918$
	$188,\!6712$	$111,\!0241$	$12,\!47945$	$26,\!9313$	183,7944	$103,\!2197$	$32,\!046$	$13,\!3926$
	$188,\!8236$	$111,\!0059$	12,46	$25,\!5396$	$183,\!9468$	$103,\!8156$	$33,\!3261$	$13,\!3923$
	$188,\!976$	$113,\!91$	$12,\!41045$	$24,\!5249$	$184,\!0992$	$104,\!4512$	$31,\!1616$	$13,\!3917$
	189,1284	$116,\!8075$	$12,\!40525$	$25,\!5257$	184,2516	$105,\!1587$	$29,\!4109$	$13,\!3901$
	189,2808	$114,\!4884$	$12,\!4478$	$28,\!4248$	$184,\!404$	$105,\!8369$	32,8024	$13,\!3836$

Tabela A.2: Poço 3 e 4

	Poç	o 3		Poço 4				
Depth	DT	GR	Mcal	Depth	DT	GR	MCAL	
210,0072	121,201	57,5775	$12,\!4051$	220,0656	113,5758	24,2766	15,441	
$210,\!1596$	119,7551	$55,\!9082$	$12,\!4006$	$220,\!218$	$113,\!2193$	$25,\!3706$	$15,\!4378$	
$210,\!312$	116,028	47,0902	$12,\!37735$	$220,\!3704$	$113,\!8692$	28,1296	$15,\!4353$	
$210,\!4644$	$113,\!6446$	$36,\!0281$	$12,\!3518$	220,5228	$114,\!3821$	30,2444	$15,\!4378$	
$210,\!6168$	$114,\!6212$	$29,\!173$	$12,\!3267$	$220,\!6752$	$114,\!9976$	33,7151	$15,\!4408$	
210,7692	$114,\!3547$	$28,\!3468$	$12,\!3455$	$220,\!8276$	$115,\!4332$	38,7639	$15,\!4416$	
$210,\!9216$	$113,\!6489$	29,8585	$12,\!3457$	$220,\!98$	$115,\!479$	38,5795	$15,\!4417$	
$211,\!074$	113,2225	$30,\!1511$	$12,\!33815$	$221,\!1324$	$115,\!8479$	$32,\!3734$	$15,\!4416$	
$211,\!2264$	112,2133	28,8271	$12,\!3443$	221,2848	116, 1958	$25,\!0561$	$15,\!4412$	
$211,\!3788$	$111,\!3994$	26,7453	$12,\!35085$	$221,\!4372$	116,7691	21,5016	$15,\!4414$	
$211,\!5312$	111,7526	24,5799	$12,\!3422$	221,5896	$117,\!5813$	$23,\!3649$	$15,\!4437$	
$211,\!6836$	112,7514	$22,\!8561$	$12,\!33645$	221,742	117,418	$25,\!4097$	$15,\!4456$	
$211,\!836$	$113,\!8575$	22,7732	$12,\!29905$	$221,\!8944$	116,7415	24,711	$15,\!4447$	
$211,\!9884$	$114,\!4339$	24,5262	$12,\!26825$	$222,\!0468$	116,2329	$24,\!0613$	$15,\!4449$	
$212,\!1408$	$114,\!3813$	$26,\!117$	$12,\!26925$	$222,\!1992$	$115,\!9312$	24,7846	$15,\!4442$	
$212,\!2932$	$114,\!2584$	$25,\!69$	$12,\!28475$	$222,\!3516$	$115,\!8825$	$25,\!9429$	$15,\!4431$	
$212,\!4456$	$115,\!0755$	$24,\!3657$	$12,\!3017$	$222,\!504$	$115,\!8818$	$26,\!6187$	$15,\!4452$	
$212,\!598$	$116,\!6382$	$24,\!3728$	$12,\!2838$	$222,\!6564$	$115,\!314$	$25,\!8637$	$15,\!4424$	
212,7504	$117,\!9231$	24,5792	$12,\!2733$	$222,\!8088$	114,7081	24,5038	$15,\!4277$	
$212,\!9028$	$118,\!3356$	$23,\!3744$	$12,\!28275$	$222,\!9612$	$114,\!1556$	$24,\!0147$	$15,\!4044$	
$213,\!0552$	$117,\!8338$	$23,\!3371$	$12,\!2857$	$223,\!1136$	113,7303	$24,\!8491$	$15,\!39$	
$213,\!2076$	$117,\!1056$	$25,\!9525$	$12,\!303$	$223,\!266$	113,7792	$25,\!3615$	$15,\!3899$	
$213,\!36$	$116,\!493$	$28,\!8507$	$12,\!3185$	$223,\!4184$	$114,\!4531$	$23,\!8633$	$15,\!3928$	
$213,\!5124$	$115,\!9235$	$29,\!4536$	$12,\!337$	$223,\!5708$	$115,\!1981$	23,272	$15,\!3942$	
$213,\!6648$	$115,\!8336$	$28,\!6144$	$12,\!36525$	223,7232	$115,\!4997$	$24,\!8625$	$15,\!3988$	
$213,\!8172$	$116,\!4615$	$28,\!3516$	$12,\!3617$	$223,\!8756$	$115,\!0799$	26,8206	$15,\!4079$	
$213,\!9696$	$117,\!1891$	$28,\!3417$	$12,\!34435$	$224,\!028$	$114,\!3785$	28,5527	$15,\!4103$	
$214,\!122$	117,7839	$28,\!1156$	$12,\!3458$	$224,\!1804$	113,7305	29,1715	$15,\!4105$	
$214,\!2744$	$117,\!8915$	$28,\!999$	$12,\!38355$	$224,\!3328$	113,7188	27,5635	$15,\!4143$	

Tabela A.3: Poços 5 e 6

Poço 5					Poço 6				
	Depth	DT	GR	MCAL	Depth	DT	GR	MCAL	
	$185,\!0136$	$103,\!908$	$41,\!6673$	$12,\!6292$	160,02	102,8394	$35,\!8758$	$12,\!2275$	
	$185,\!166$	$103,\!1945$	$38,\!3882$	$12,\!6012$	$160,\!1724$	102,7744	$37,\!4263$	$12,\!2289$	
	$185,\!3184$	102,6008	$37,\!1405$	12,5845	$160,\!3248$	102,7988	$38,\!3576$	$12,\!2301$	
	$185,\!4708$	$102,\!4105$	$38,\!2414$	12,5829	$160,\!4772$	$102,\!9401$	$37,\!1564$	$12,\!2269$	
	$185,\!6232$	102,6648	$39,\!0507$	12,5842	$160,\!6296$	103,1659	$37,\!007$	$12,\!2264$	
	185,7756	$103,\!9078$	39,426	$12,\!583$	160,782	$103,\!4124$	$39,\!3796$	$12,\!2277$	
	$185,\!928$	$106,\!0934$	$41,\!2843$	12,5807	$160,\!9344$	$103,\!6302$	$40,\!8887$	$12,\!2266$	
	$186,\!0804$	$108,\!8154$	$43,\!3174$	12,5675	$161,\!0868$	$103,\!8194$	$40,\!7716$	$12,\!2284$	
	$186,\!2328$	$112,\!0232$	$43,\!7947$	12,5529	$161,\!2392$	$104,\!0294$	$40,\!4972$	12,232	
	$186,\!3852$	$115,\!0337$	$41,\!4888$	$12,\!5362$	$161,\!3916$	$104,\!3197$	$41,\!0408$	12,231	
	$186,\!5376$	$116,\!7055$	$37,\!6975$	12,5162	$161,\!544$	104,7146	41,8771	$12,\!2324$	
	$186,\!69$	$116,\!3585$	$36,\!7972$	12,5094	$161,\!6964$	$105,\!1968$	41,0181	12,233	
	$186,\!8424$	$115,\!8421$	$38,\!6616$	12,5134	$161,\!8488$	105,7483	$38,\!6838$	$12,\!2386$	
	$186,\!9948$	$117,\!359$	$39,\!4302$	12,5232	$162,\!0012$	$106,\!3862$	$38,\!6674$	$12,\!2516$	
	$187,\!1472$	$121,\!0924$	$39,\!5828$	12,5334	$162,\!1536$	$107,\!1384$	42,2424	$12,\!2586$	
	$187,\!2996$	$123,\!4339$	$40,\!3847$	12,5261	$162,\!306$	$107,\!9887$	$43,\!3013$	$12,\!2484$	
	$187,\!452$	$121,\!9502$	$40,\!357$	$12,\!4918$	$162,\!4584$	$108,\!854$	43,7053	$12,\!2241$	
	$187,\!6044$	$121,\!3512$	$39,\!1615$	$12,\!4558$	$162,\!6108$	$109,\!613$	$48,\!4428$	$12,\!2058$	
	187,7568	$121,\!4959$	37,3683	$12,\!4471$	162,7632	$110,\!1517$	$51,\!9827$	12,203	
	$187,\!9092$	$121,\!3312$	$35,\!2717$	$12,\!4592$	$162,\!9156$	110,4021	$50,\!5058$	$12,\!2099$	
	$188,\!0616$	$120,\!7829$	$34,\!6683$	$12,\!4891$	$163,\!068$	$110,\!3556$	46,7152	$12,\!2119$	
	$188,\!214$	$119,\!6438$	$35,\!3793$	12,5115	$163,\!2204$	$110,\!052$	$42,\!2103$	$12,\!2024$	
	$188,\!3664$	$119,\!3529$	$36,\!0947$	12,4998	$163,\!3728$	109,5594	40,7161	$12,\!1947$	
	188,5188	$120,\!3847$	$35,\!6793$	12,4608	$163,\!5252$	$108,\!9654$	$41,\!2572$	$12,\!1978$	
	$188,\!6712$	$121,\!8375$	$35,\!4684$	$12,\!4289$	$163,\!6776$	$108,\!381$	$40,\!6659$	$12,\!1998$	
	$188,\!8236$	$122,\!2202$	$35,\!4825$	$12,\!4291$	$163,\!83$	$107,\!935$	$37,\!001$	$12,\!1994$	
	$188,\!976$	$121,\!7483$	35,7366	$12,\!4472$	$163,\!9824$	107,7439	$32,\!5707$	$12,\!1978$	
	$189,\!1284$	$121,\!0942$	$37,\!7703$	$12,\!4706$	$164,\!1348$	$107,\!8694$	$30,\!6602$	$12,\!195$	
	189,2808	121,4812	39,5005	$12,\!4942$	$164,\!2872$	$108,\!3044$	$29,\!3352$	$12,\!1932$	

Tabela A.4: Poços 7 e 8

	Poç	o 7		Poço 8			
Depth	DT	GR	Mcal	Depth	DT	GR	Mcal
$155,\!1432$	119,7231	$31,\!275$	$11,\!9698$	$165,\!0492$	109,704	$34,\!6727$	$12,\!06435$
$155,\!2956$	117,2038	$30,\!6512$	$11,\!95745$	$165,\!2016$	$110,\!0822$	$34,\!3409$	$12,\!0592$
$155,\!448$	115,7311	29,5279	$11,\!95945$	$165,\!354$	$115,\!0503$	$34,\!0848$	$12,\!0453$
$155,\!6004$	$114,\!508$	30,1298	$11,\!9739$	$165,\!5064$	$120,\!4322$	$35,\!3773$	$12,\!01035$
155,7528	113,7814	$31,\!2452$	$11,\!9591$	$165,\!6588$	$116,\!1735$	41,2878	$12,\!0089$
$155,\!9052$	$113,\!5046$	$29,\!807$	$11,\!94945$	$165,\!8112$	$111,\!9494$	44,6224	$12,\!00795$
$156,\!0576$	$113,\!035$	$28,\!6173$	$11,\!96305$	$165,\!9636$	$110,\!478$	$41,\!5895$	$12,\!0176$
$156,\!21$	$113,\!0415$	28,7196	$11,\!9633$	166, 116	109,2075	$39,\!1172$	$12,\!01825$
$156,\!3624$	$113,\!5546$	$27,\!8684$	$11,\!9423$	$166,\!2684$	$107,\!9946$	$38,\!0513$	$12,\!0049$
156,5148	$113,\!482$	$27,\!3932$	$11,\!9415$	$166,\!4208$	$107,\!3157$	$35,\!0712$	$11,\!99705$
$156,\!6672$	$113,\!1208$	$27,\!6918$	$11,\!98495$	$166,\!5732$	107,5656	32,7072	$11,\!99305$
$156,\!8196$	113,2115	$28,\!9235$	$12,\!03005$	$166,\!7256$	$107,\!2964$	$34,\!1405$	$12,\!00845$
$156,\!972$	112,7611	30,2055	$12,\!0866$	$166,\!878$	$106,\!4062$	$35,\!6226$	$11,\!9933$
$157,\!1244$	$112,\!1033$	29,0695	$12,\!185$	$167,\!0304$	$106,\!1566$	$34,\!8373$	$11,\!999$
$157,\!2768$	$112,\!0081$	27,7405	$12,\!161$	$167,\!1828$	$106,\!009$	$32,\!9231$	$12,\!00085$
$157,\!4292$	112,2206	$27,\!3458$	12,1003	$167,\!3352$	$106,\!415$	$31,\!5741$	$12,\!00115$
$157,\!5816$	$111,\!9547$	$28,\!8042$	$12,\!0762$	$167,\!4876$	$107,\!4156$	31,6048	$12,\!0005$
157,734	110,5	$31,\!4918$	$12,\!0461$	$167,\!64$	$108,\!8759$	32,8499	$12,\!02075$
$157,\!8864$	$108,\!6184$	$32,\!6532$	$12,\!0955$	$167,\!7924$	110,1653	$34,\!6284$	$12,\!0508$
$158,\!0388$	$108,\!0013$	$33,\!492$	$12,\!24465$	$167,\!9448$	$111,\!0728$	$37,\!21$	$12,\!0399$
$158,\!1912$	$108,\!3975$	$34,\!1509$	$12,\!3218$	$168,\!0972$	$111,\!5354$	$38,\!1985$	$12,\!01555$
$158,\!3436$	$109,\!8503$	$32,\!4172$	$12,\!26935$	$168,\!2496$	$111,\!9427$	$36,\!3626$	$12,\!0247$
$158,\!496$	$112,\!1315$	$30,\!4557$	12,2295	168,402	$112,\!3837$	$35,\!1176$	$12,\!03255$
$158,\!6484$	$112,\!9795$	30,7713	$12,\!27345$	$168,\!5544$	$112,\!3408$	$36,\!5124$	$12,\!00955$
$158,\!8008$	$113,\!0559$	$32,\!3514$	$12,\!44415$	$168,\!7068$	$111,\!9169$	$36,\!7736$	$12,\!00075$
$158,\!9532$	$113,\!2912$	$32,\!8014$	$12,\!60685$	$168,\!8592$	$111,\!2954$	$35,\!4667$	$12,\!00975$
$159,\!1056$	112,7182	$30,\!8779$	$12,\!46565$	$169,\!0116$	$111,\!5401$	$36,\!5057$	$12,\!0137$
159,258	$111,\!9585$	29,4115	12,1678	169,164	$112,\!0411$	$37,\!934$	$12,\!02285$
$159,\!4104$	$111,\!9768$	$28,\!292$	$12,\!03415$	$169,\!3164$	111,7037	$39,\!0079$	12,0679

Tabela A.5: Poço 9 e 10

	Poç	o 9		Poço 10			
Depth	DT	GR	Mcal	Depth	DT	GR	MCAL
220,218	108,1158	58,3648	10,1945	110,1852	$136,\!4643$	100,8738	11,9832
$220,\!3704$	$111,\!6807$	59,7811	$10,\!12825$	$110,\!3376$	$137,\!5657$	$100,\!9594$	$12,\!033$
$220,\!5228$	$104,\!3703$	57,8087	10,0294	110, 49	$142,\!3522$	$101,\!0773$	$11,\!9865$
$220,\!6752$	$101,\!2376$	$52,\!4658$	$9,\!8912$	$110,\!6424$	$140,\!5943$	$101,\!1743$	$11,\!99785$
220,8276	$101,\!156$	47,893	$10,\!0076$	$110,\!7948$	$136,\!6751$	$101,\!2436$	$12,\!0113$
$220,\!98$	$101,\!0587$	48,5363	$10,\!26765$	$110,\!9472$	$135,\!9248$	$101,\!3257$	$11,\!95715$
$221,\!1324$	$101,\!1497$	51,2319	$10,\!3436$	$111,\!0996$	$135,\!9415$	$101,\!4756$	$11,\!91535$
221,2848	$101,\!3361$	49,8049	$10,\!3771$	$111,\!252$	$136,\!2445$	101,7321	$11,\!90305$
$221,\!4372$	101,7619	47,2879	$10,\!54295$	$111,\!4044$	$136,\!5646$	$102,\!1009$	$11,\!8906$
$221,\!5896$	$102,\!2734$	48,2178	$10,\!52885$	111,5568	$136,\!3559$	$102,\!5418$	$11,\!8984$
221,742	$102,\!8298$	$49,\!0757$	$10,\!3784$	111,7092	$134,\!4612$	$102,\!9676$	$11,\!89595$
$221,\!8944$	$103,\!2736$	$46,\!9285$	$10,\!30965$	$111,\!8616$	$131,\!2603$	$103,\!2703$	$11,\!9087$
$222,\!0468$	$103,\!7424$	$44,\!9621$	10,2228	$112,\!014$	$127,\!6314$	$103,\!365$	$11,\!8864$
$222,\!1992$	$104,\!2769$	43,7826	$10,\!30765$	$112,\!1664$	$124,\!4891$	103,2234	$11,\!8674$
$222,\!3516$	$104,\!3212$	$43,\!3323$	$10,\!8172$	$112,\!3188$	$123,\!6302$	$102,\!8861$	$11,\!87765$
$222,\!504$	103,7088	44,2724	$10,\!69375$	$112,\!4712$	$125,\!8699$	$102,\!4534$	11,8881
$222,\!6564$	$104,\!0533$	$45,\!6578$	$9,\!83025$	$112,\!6236$	$128,\!842$	$102,\!0646$	$11,\!863$
222,8088	$104,\!8471$	45,708	$9,\!25575$	112,776	$131,\!0864$	$101,\!8643$	$11,\!87835$
$222,\!9612$	$105,\!4098$	$44,\!6843$	$9,\!15135$	$112,\!9284$	$132,\!2753$	$101,\!9513$	$11,\!87635$
$223,\!1136$	105,7234	$43,\!1086$	9,5158	$113,\!0808$	$131,\!3348$	$102,\!3213$	$11,\!8667$
223,266	$105,\!5953$	$43,\!4481$	$9,\!97365$	$113,\!2332$	$132,\!9201$	$102,\!8466$	$11,\!8547$
$223,\!4184$	$105,\!4182$	$46,\!1989$	$10,\!0576$	$113,\!3856$	$138,\!4274$	$103,\!3387$	$11,\!8981$
$223,\!5708$	$105,\!1077$	$47,\!0489$	$9,\!9642$	$113,\!538$	$138,\!3373$	$103,\!6453$	$11,\!9491$
223,7232	$104,\!6753$	$46,\!1862$	$9,\!64745$	$113,\!6904$	$130,\!3748$	$103,\!6773$	$12,\!07535$
$223,\!8756$	$104,\!3118$	47,5704	9,0487	$113,\!8428$	$122,\!2436$	$103,\!3603$	$12,\!1502$
$224,\!028$	$104,\!0033$	$48,\!3564$	$8,\!94075$	$113,\!9952$	$121,\!7765$	$102,\!634$	$12,\!0949$

Tabela A.6: Poço 11

Depth	DT	GR	MCAL
110,3891	$156,\!0958$	$157,\!3675$	12,5988
110,2652	154,2693	$156,\!8151$	$12,\!5583$
$110,\!4175$	$152,\!364$	$155,\!2532$	$12,\!5041$
110,5698	$152,\!0296$	$153,\!2288$	$12,\!4912$
110,7221	$152,\!4095$	$152,\!364$	$12,\!5021$
$110,\!8744$	$152,\!6742$	$152,\!0296$	$12,\!5321$
$111,\!0267$	$153,\!258$	$152,\!4095$	$12,\!5318$
$111,\!179$	154,2999	$152,\!5125$	$12,\!5225$
$111,\!3313$	$155,\!6508$	$152,\!9198$	$12,\!5029$
$111,\!4836$	$156,\!978$	$153,\!258$	$12,\!4936$
$111,\!6359$	$156,\!985$	$154,\!2999$	$12,\!4748$
111,7882	$152,\!4867$	$155,\!6508$	$12,\!4521$
$111,\!9405$	$146,\!6954$	$156,\!3403$	$12,\!4392$
$112,\!0928$	$145,\!0881$	$157,\!345$	$12,\!4237$
$112,\!2451$	144,7184	$155,\!3909$	$12,\!4215$
$112,\!3974$	$144,\!8047$	$152,\!4867$	$12,\!4144$
$112,\!5497$	$145,\!0231$	$146,\!6954$	$12,\!3854$
112,702	$145,\!0095$	$145,\!5375$	$12,\!3756$
$112,\!8543$	$144,\!9902$	$144,\!8391$	$12,\!3829$
$113,\!0066$	$145,\!6466$	144,726	$12,\!4028$
$113,\!1589$	$145,\!2532$	$144,\!8047$	$12,\!4064$
$113,\!3112$	$140,\!0894$	$145,\!0231$	$12,\!3941$
$113,\!4635$	$132,\!6897$	$145,\!0095$	$12,\!3686$
$113,\!6158$	$130,\!6201$	$144,\!9378$	$12,\!3585$
113,7681	$132,\!0786$	$145,\!2668$	$12,\!3401$
$113,\!9204$	$139,\!4046$	$145,\!7917$	$12,\!3196$
$114,\!0727$	$150,\!0054$	$145,\!2532$	$12,\!3167$
$114,\!225$	$154,\!0847$	$140,\!0894$	$12,\!3377$
$114,\!3773$	$150,\!9945$	$135,\!9734$	$12,\!3548$
$114,\!5296$	142,2143	$131,\!0332$	$12,\!3797$
$114,\!6819$	$135,\!4812$	$130,\!9126$	$12,\!3884$
$114,\!8342$	$133,\!3615$	$132,\!0786$	$12,\!3866$
$114,\!9865$	$133,\!6548$	$139,\!4046$	$12,\!3831$

Apêndice B

Código utilizado no Python

💭 jupyter	Análise Perfil BLV1.1 - Copia Last Checkpoint: 05/01/2018 (autosaved)		P Logout
File Edit	View Insert Cell Kernel Widgets Help	Trusted	Python 3 O
8 + %			
In [6]:	<pre>if ig.axes = plt.subjects(nrows=1, ncols=12, figsize=(25,15)) if or ax in axes: ax.set_yticks(np.arange(0,200,50)) ax.set_ytin(386,-75) ax.invert_yaxis() ax.set_ytin(386,-75) ax.invert_yaxis() ax.grid() axes[0].set_xtin(x,0, arange(0,200,50)) axes[0].set_xtin(x,0, arange(0,200,50)) axes[0].set_xtin(x,0, arange(0,200,50)) axes[0].set_xtin(x,0, arange(0,200,50)) axes[1].set_xticks(np.arange(0,200,50)) axes[1].set_xticks(np.arange(0,200,50)) axes[2].set_xticks(np.arange(0,200,50)) axes[2].set_xticks(np.arange(0,200,50)) axes[2].set_xticks(np.arange(0,200,50)) axes[2].set_xticks(np.arange(0,200,50)) axes[3].set_xticks(np.arange(0,200,50)) axes[3].set_xticks(np.arange(0,200,50)) axes[4].set_xticks(np.arange(0,200,50)) axes[5].set_xticks(np.arange(0,200,50)) axes[5].plot(df.DT5,df.Alt5, color='blac', lw=0.8) axes[5].set_xticks(np.arange(0,200,50)) axes[5].plot(df.DT5,df.Alt5, color='blac', lw=0.8) axes[5].set_xticks(np.arange(0,200,50)) axes[6].set_xticks(np.arange(0,200,50)) axes[6].set_xticks(np.arange</pre>		
	B/ her rear ane chill 1		

Figura B.1: Código do Python utilizado nos poços 1 a 6.

Figura B.2: Código do Python utilizado nos poços 7 a 11.

Apêndice C

Cross-plot gráfico BHC x Cáliper

Foi inserido no gráfico de correção dos valores anômalos do BHC, devido à variações dos valores do cáliper, os valores obtidos nos poços estudados.

Figura C.1: Cross-plot do BHC.

Referências

- Angelim, L. e Kosin, M. (2001) Programa de levantamentos geológicos do brasil, Nota Explicativa (In Portuguese). CPRM, CDROM, Brasília, Brazil.
- ANP (2018) Bdep webmaps.
- Asquith, G. e Krygowski, D. (2004) Aapg methods in exploration, no. 16, chapter 1: Basic relationships of well log interpretation, AAPG Special Volumes, Texas, USA.
- Burch, D. (2002) Log ties seismic to ground truth, The Geophysical Corner, 2:26–29.
- Caixeta, J. M.; Bueno, G. V.; Magnavita, L. P. e Feijó, F. (1994) Bacias do Recôncavo, Tucano e Jatobá, Boletim de Geociências da PETROBRAS, 8(1):163-172.
- Chang, H. K.; Kowsmann, R. O.; Figueiredo, A. M. F. e Bender, A. (1992) Tectonics and stratigraphy of the East Brazil rift system: An overview, Tectonophysics, 213(1-2):97– 138.
- Costa, I. P.; Milhomem, P. S.; Bueno, G. V.; Lima e Silva, H. S. e Kosin, M. D. (2007) Subbacias do Tucano Sul e Central, Boletim de Geociências da PETROBRAS, 15(2):433– 443.
- Exploracionistas (2011) Sismograma sintético e a correlação perfil- sísmica.
- Ferronatto, J. P. F. (2013) Arquitetura de fácies e evolução estratigráfica dos sistemas deltáicos do grupo Ilhas na Bacia do Tucano Central–BA.
- Figueiredo, A. M. (2007) Mapeamento Automático de Horizontes e Falhas em Dados Sísmicos 3D baseado no algoritmo de Gás Neural Evolutivo, Tese de Doutorado, Pontifícia Universidade Católica do Rio de Janeiro.
- Gandol, M.; Mathur, R. R. e Eisawi, A. A. (2016) Correlation of seismic, well logging and pyrolysis analysis for evaluating hydrocarbon, Journal of Geosciences and Geomatics, 4:82–90.
- Goetz, J.; Dupal, L. e Bowler, J. (1979) An investigation into discrepancies between sonic log and seismic check spot velocities, The APPEA Journal, **19**(1):131–141.

- Kosin, M. (2009) O embasamento das bacias do Recôncavo, de Tucano e de Jatobá-uma visão a partir das cartas geológicas do Brasil ao milionésimo, Boletim de Geociências da Petrobras, 17:89–108.
- Kowalski, J. et al. (1975) Formation strength parameters from well logs, In: SPWLA 16th Annual Logging Symposium, Society of Petrophysicists and Well-Log Analysts, 4-7 June, New Orleans, Louisiana.
- Loureiro, F. O. (2013) Análise da geometria e correção estática no processamento sísmico 3D, Trabalho de Conclusão de Curso, Universidade Federal Fluminense, Niterói, Brasil.
- Maps, G. (2017) Web mapping.
- Miranda, H. C. B. (2004) Interpretação conjunta de dados de GPR e medidas de permeabilidade sobre um análogo de reservatório siliciclástico falhado na Bacia de Tucano, no NE do Brasil, Dissert. de Mestrado, Universidade Federal do Rio Grande do Norte.
- Nery, G. G. (1990) Perfilagem geofísica de poços: Notas de aula, Petrobras/Cen-Nor.
- Nery, G. G. (2013) Perfilagem Geofísica em Poço Aberto fundamentos básicos com ênfase em petróleo, Rio de Janeiro, SBGF, 222p.
- Neves, S.; Borges, J.; Caldeira, B.; Moita, P.; Pedro, J. e Boaventura, R. (2015) Aspectos sobre os métodos de refração sísmica, Associação Portuguesa de Geólogos, Universidade de Évora, ICT- Instituto Ciências da Terra, Évora, Portugal.
- Peixinho, M. A. L. (2017) Hidrogeologia do sistema aquífero Marizal/São Sebastião na Sub-Bacia do Tucano Central, Estado da Bahia, Dissert. de Mestrado, Instituto de Geociências da Universidade Federal da Bahia.
- Rossi, G.; Moro, G. D.; Mammo, T.; Nieto, D.; Picotti, S.; Vesnaver, A. e Vuan, A. (2001) A 3d seismic survey for groundwater protection, In: 2001 SEG Annual Meeting.
- Santos, C. C. e Reis, C. (2011) Projeto bacia do Tucano Central: Folha Caimbé-SC. 24-ZAI: Folha Jeremoabo-SC. 24-ZA-II.
- Santos, C. C.; Reis, C. e Pedreira, A. J. (2010) Projeto Bacia do Tucano Central: Folha Ribeira do Pombal-SC. 24-ZA-IV: Folha Cícero Dantas-SC. 24-ZAV.
- Shtivelman, V. (2003) Application of shallow seismic methods to engineering, environmental and groundwater investigations, Bollettino di Geofisica Teorica ed Applicata, 44:209–222.
- Silva, D. C. M. (2013) Cálculo do ângulo limite.
- Silva, F. G. M. e Beneduzi, C. F. (2018) O perfil sônico, a física de rochas e a identificação de fluidos em reservatórios siliciclásticos, Boletim SBGF, 103:22–25.

- Silva, M. G. (2004) Processamento de dados sísmicos da Bacia do Tacutu, Dissert. de Mestrado, Universidade Federal da Bahia, Salvador, Brasil.
- Steeples, D. W. (2000) A review of shallow seismic methods, Annals of Geophysics, 43(6).
- Wikipedia (2017) Mapa localização de Cícero Dantas e Banzaê BA.
- Wyllie, M. R. J.; Gregory, A. R. e Gardner, L. W. (1956) Elastic wave velocities in heterogeneous and porous media, Geophysics, **21**(1):41–70.
- Yadav, L.; Ghosh, D.; Maurya e Bhattacharya (2004) Calibration of sonic logs for seismic applications in Upper Assam, Society Petroleum Geophysiscists, pp. 1–18.
- Yilmaz, Ö. (2001) Seismic data analysis, vol. 1, Society of Exploration Geophysicists Tulsa.