

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE GEOCIÊNCIAS CURSO DE GRADUAÇÃO EM GEOFÍSICA

GEO213 – TRABALHO DE GRADUAÇÃO

PROPRIEDADES TÉRMICAS DO EMBASAMENTO ADJACENTE À BACIA DE SERGIPE

ROBERTA VIVIANE SOUZA ALVES

SALVADOR – BAHIA JULHO-2009

Propriedades térmicas do embasamento adjacente à bacia de Sergipe

por

Roberta Viviane Souza Alves

GEO213 – TRABALHO DE GRADUAÇÃO

Departamento de Geologia e Geofísica Aplicada

DO

Instituto de Geociências

DA

UNIVERSIDADE FEDERAL DA BAHIA

Comissão Examinadora

_____ Dr. Roberto Max Argollo - Orientador

- Dr. Moacyr Moura Marinho
- Dr. Alexandre Barreto Costa

Data da aprovação: 17/07/2009

Sabe aquela sensação de dever cumprido?!

Dedico esta monografia à todos aqueles que me amam. Principalmente aos meus pais.

RESUMO

Neste trabalho, foram estudadas as propriedades térmicas de rochas da parte sul do embasamento cristalino adjacente à Bacia de Sergipe. Foram coletadas 230 amostras de rochas cristalinas em 186 afloramentos visitados, algumas vezes mais de uma amostra por afloramento, outras nenhuma amostra.

Nos afloramentos, indentificamos as litologias presentes, coletamos amostras e realizamos a localização por GPS. No laboratório determinamos os teores dos elementos K, U e Th por espectrometria gama, densidade, condutividade térmica, difusividade térmica, calor específico e a taxa de produção de calor radiogênico.

Considerando os valores anômalos existentes, os teores de K, U e Th nas rochas analisadas variam entre 0,01 a 4,88 %, 0,03 a 42,55 ppm e 0,42 a 99,47 ppm, respectivamente.

Os valores de condutividade térmica, difusividade térmica e calor específico variam entre 0,35 a 5,86 Wm⁻¹K⁻¹, 1,27 a 2,08x $10^{-6}m^2s^{-1}$ e 0,261 a 0,904 x 10^3 Jkg⁻¹K⁻¹, respectivamente.

As taxas de produção superficial de calor radiogênico, dependentes da densidade e dos teores de K, U e Th das rochas analisadas, refletem principalmente a litologia. Neste trabalho, a taxa de produção de calor variou entre 0,069 a 15,320 μWm^{-3} .

A partir dos resultados obtidos, nenhuma correlação foi vista entre a condutividade térmica, difusividade térmica e calor específico com a taxa de produção de calor radiogênico.

ABSTRACT

In this work, thermic properties of rocks from the south part of the crystalline emplacement neighboring the Basin of Sergipe were studied. Two hundreds and thirty samples of crystalline rocks were collected in a hundred and eighty-six collected protruding rocks, sometimes more than one sample for one protruding rock, sometimes, none.

At the outcrops we identified the lithologies, collected samples and indicated in the location using GPS. At the laboratory established the content of the elements K, U and Th by gamma ray spectrometry. In addition we measured the density, the thermal conductivity and diffusivity, the isobaric specific heat and then computed the volumetric ratio of radiogenic heat production.

Considering the anomalous values present, the tenor of K, U and Th in the analyzed rocks vary from 0.01 to 4.88 %, 0.03 to 42.55 ppm and 0.42 to 99.47 ppm, respectively.

The values of thermal conductivity, thermal diffusivity and isobaric specific heat vary from 0,35 to 5,86 Wm⁻¹ K^{-1} , 1,27 to 2,08 x 10⁻⁶ $m^2 s^{-1}$ and 0,261 to 0,904 x 10³ J $kg^{-1}K^{-1}$, respectively.

The superficial production taxes of radiogenic heat depend on the density and tenors of K, U and Th of the analyzed rocks, reflect, mainly, the lithology. In this work, production tax of heat varied from 0,069 to 15,320 μWm^{-3} .

From the obtained results, no correlation between thermal conductivity, thermal difusivity and isobaric specific heat and production tax of radiogenic heat was observed.

ÍNDICE

RESU	40	iii			
ABSTI	ACT	iv			
ÍNDIC	Ε	v			
ÍNDIC	E DE FIGURAS	rii			
INTRO	DUÇÃO	1			
CAPÍT	ULO 1 Área de estudo	3			
1.1	Localização	3			
1.2	Aspectos Geológicos	3			
	1.2.1 Embasamento Gnáissico	5			
	1.2.2 Domínio Estância	8			
CAPÍI	ULO 2 Conceitos teóricos	0			
2.1	Transporte de calor	.0			
	2.1.1 Fluxo de calor	.0			
2.2	Porosidade	.1			
2.3	Propriedades térmicas das rochas	.1			
	2.3.1 Condutividade térmica	2			
	2.3.2 Difusividade térmica	4			
	2.3.3 Calor específico e capacidade calorífera volumétrica	5			
2.4	Radioatividade	15			
	2.4.1 Decaimento radioativo	5			
	2.4.2 Série radioativa	.6			
	2.4.3 Equilíbrio radiotivo secular	.7			
	2.4.4 Urânio, tório e potássio	.8			
CAPÍT	ULO 3 Métodos Analíticos	20			
3.1	Medidas dos parâmetros térmicos 2				
3.2	Medidas de K, U e Th	20			
	3.2.1 Análise dos espectros	22			
	3.2.2 Definição das janelas	24			
	3.2.3 Geometria de contagem	24			

3.2.4 Padrões	25
3.2.5 Obtenção das equações de concentração	25
3.2.6 Nível crítico, limite de detecção e limite de determinação quantitativa 2	26
3.2.7 Taxa volumétrica de produção de calor radiogênico	27
3.2.8 Medidas de densidade	28
CAPÍTULO 4 Resultados e Discussões	30
4.1 Potássio $\ldots \ldots 3$	30
4.2 Urânio	31
4.3 Tório	31
4.4 Densidade $\ldots \ldots 3$	31
4.5 Taxa de produção de calor radiogênico	32
4.6 Condutividade térmica	32
4.7 Difusividade térmica	32
4.8 Calor espécifico	33
CAPÍTULO 5 Conclusões	15
Agradecimentos	16
APÊNDICE A Litologia, localização, e coordenadas das amostras da	
área de estudo $\ldots \ldots 4$	17
APÊNDICE B Teores de K, U e Th, densidade e produção de calor radiogênico das amostras da área de estudo 5	58
APÊNDICE C Teores de K, U e Th, condutividade térmica, difusivi- dade térmica e calor específico das amostras da área de estudo	36
Referências Bibliográficas 7	70

ÍNDICE DE FIGURAS

1.1	Localização do estado de Sergipe no mapa do Brasil (A), estado de Sergipe	
	(B) e localização da área de estudo no mapa do estado de Sergipe (C)	4
1.2	Esquema ilustrativo da geologia do embasamento adjacente à bacia de Sergipe	
	com demarcação em vermelho das unidades estudadas	6
1.3	Mapa geológico da área de estudo	9
2.1	Gráfico exponencial da Lei de decaimento radioativo	17
3.1	Aparelho QuicklineTM - 30	21
3.2	Medidas de campo com o espectrômetro portátil	22
3.3	Espectrômetro gama: Castelos de chumbo	22
4.1	Dispersão dos teores de K nas principais litologias da área de estudo	33
4.2	Mapa de isoteores do potássio da área de estudo	34
4.3	Mapa de isoteores de urânio da área de estudo	35
4.4	Correlação entre os teores dos elementos potássio, urânio e tório da área de	
	estudo	36
4.5	Dispersão dos teores de U nas principais litologias da área de estudo $\ \ . \ . \ .$	37
4.6	Dispersão dos teores de Th nas principais litologias da área de estudo	38
4.7	Mapa de isoteores de tório da área de estudo	39
4.8	Dispersão dos valores de densidades nas principais litologias da área de estudo	40
4.9	Mapa de isovalores de densidade da área de estudo	41
4.10	Mapa de isoteores da taxa de produção de calor radiogênico da área de estudo	42
4.11	(1)-Dispersão da condutividade térmica nas litologias da área de estudo; (2)-	
	Dispersão da difusividade térmica nas litologias da área de estudo;(3)-Dispersão	
	do calor específico nas litologias da área de estudo	43
4.12	(1)- Gráfico correlação condutividade térmica x produção de calor radiogêncio	
	; (2)- Gráfico correlação difusividade térmica x produção de calor radiogêncio	
	e (3)- Gráfico correlação calor específico x produção de calor radiogêncio	44

INTRODUÇÃO

A bacia de Sergipe, situada na região nordeste do Brasil, é uma das muitas bacias sedimentares ao longo da costa brasileira. Formada durante a abertura do oceano Atlântico Sul, ela é caracterizada como sendo uma sub-bacia da bacia de Sergipe-Alagoas. Na bacia de Sergipe, a estrutura do embasamento sob seus sedimentos, é conhecida através da existência de diversos afloramentos ao longo de suas bordas. Neste trabalho, a área investigada, parte sul do embasamento cristalino adjacente a bacia de Sergipe, abrange terrenos do embasamento do Cráton do São Francisco e do domínio mais externo da Faixa de Dobramentos Sergipana. Completam o quadro estratigráfico regional, os sedimentos mesozóicos da bacia de Sergipe, o Grupo Barreiras e os demais sedimentos superficiais do cenozóico, que não fazem parte do presente trabalho.

O conhecimento das propriedades térmicas das rochas é importante em estudos geotérmicos quantitativos de modelagem termo-mecânicas de bacias e em processos de convecção térmica do manto. São essas propriedades que definem a distribuição de calor na terra.

Do calor existente na crosta continental, parte vem do interior da terra transmitida através do manto e outra parte é produzida na própria crosta. Nesta parte, incluem-se o calor radiogênico, o calor produzido nas reações químicas, a presença de câmaras magmáticas e a circulação de águas termais. O calor radiogênico, que é o resultado final das transformações das energias cinéticas das partículas emitidas e dos núcleos em recuo nos processos de decaimento radioativo, constitui cerca de 40 % do calor presente na crosta. A energia gerada pelo decaimento radioativo dos radioisótopos das famílias do U^{238} , U^{235} e Th^{232} e pelo K^{40} é responsável por mais de 98 % do calor gerado no interior da terra.

Numa bacia sedimentar, o calor radiogênico gerado pelas rochas do embasamento e pelas camadas sedimentares (este menos significativo), somado ao calor proveniente da astenosfera resulta no fluxo de calor superficial total. Esse fluxo desempenha um papel relevante na história térmica da bacia, sendo seu conhecimento importante para se avaliar a geração de hidrocarbonetos. Essa avaliação, realizada por meio de modelamento termomecânico da bacia, requer o conhecimento de parâmetros térmicos como: a taxa volumétrica de produção de calor radiogênico, a condutividade térmica, a difusividade térmica e o calor específico das rochas do embasamento e dos sedimentos (Mottaghy et al., 2005).

Neste trabalho, medimos as propriedades térmicas (condutividade térmica, difusividade térmica e calor específico) e a densidade nos vários tipos de rochas aflorantes do embasamento da área de estudo, como também determinamos os teores dos elementos K, U e Th e calculamos a taxa de produção superficial de calor radiogênico nessas rochas. Com os dados obtidos buscamos correlacionar os valores de condutividade térmica, difusividade térmica e calor específico com as taxas de produção superficial de calor radiogênico das litologias em estudo.

Este trabalho insere-se no estudo mais geral desenvolvido no projeto Geoterm-Ne onde se procura estudar a geração de calor nas bacias de Cumuruxatiba, Jequitinhonha, Sergipe-Alagoas e Pernambuco-Paraíba e nos embasamentos adjacentes. O referido projeto está sendo realizado em parceria com a Petrobras e é desenvolvido no CPGG / UFBA.

O trabalho foi dividido em quatro capítulos. No Capítulo 1 mostramos a localização da área de estudo e descrevemos sua geologia. No Capítulo 2, comentamos os conceitos físicos e geofísicos necessários para o entendimento da pesquisa proposta. No Capítulo 3, apresentamos os métodos analíticos, a metodologia e os equipamentos utilizados nesta pesquisa. Os resultados e discussões pertinentes são assuntos do Capítulo 4. Por último, apresentamos as conclusões e considerações finais.

CAPÍTULO 1

Área de estudo

1.1 Localização

A área de estudo deste trabalho, compreende uma faixa com largura de cerca de cinquenta quilômetros do embasamento emerso adjacente à bacia de Sergipe-Alagoas(figura1.1). Ela localiza-se na região Nordeste do Brasil, abrange a parte meridional do estado de Sergipe, limita-se ao sul com o estado da Bahia.

Dentro desta área, estão localizados, entre outros, os municípios de Estância, Itabaianinha, Boquim, Cristianápolis, Lagarto e Palmares, centros urbanos da região e de suma importância para o desenvolvimento econômico do estado de Sergipe. Existem na região estradas não asfaltadas que facilitam o acesso da região rural a estes centros urbanos, estradas estas que facilitaram nossa locomoção as viagens de campo.

O trabalho é baseado na investigação de 189 afloramentos. Em alguns desses locais de amostragem, pela representatividade das litologias encontradas, fez-se necessária a coleta de mais de uma amostra para estudo, o que conduziu a um total de 230 amostras. Nos trabalhos de campo foram utilizados mapas topográficos e geológicos na escala de 1:100.000, para de facilitar a localização dos locais de amostragem.

1.2 Aspectos Geológicos

A área investigada abrange terrenos do embasamento do Cráton do São Francisco e do domínio mais externo da Faixa de Dobramentos Sergipana. Completam o quadro estratigráfico regional os sedimentos mesozóicos da Bacia de Sergipe, o Grupo Barreiras e os demais sedimentos superficiais do Cenozóico, que não fizeram parte do presente trabalho. Na figura 1.2 observamos um esquema representativo das unidades geológicas do estado de Sergipe com demarcação em vermelho das unidades estudadas enquanto que o mapa geológico da área de estudo é visto na figura 1.3.

O Cráton do São Francisco é unidade geotectônica estabilizada no Paleoproterozóico. Na região ele é representado por rochas gnássicas, migmatíticas e granitóides do Complexo

Figura 1.1: Localização do estado de Sergipe no mapa do Brasil (A), estado de Sergipe (B) e localização da área de estudo no mapa do estado de Sergipe (C)

Gnáissico-Migmatítico, por rochas gnáissicas, migmatíticas e granulíticas do Complexo Granulítico, todas de idade arqueana a paleoproterozóica, além de um enxame de diques presentes na região de Arauá, tidos como de idade paleoproterozóica.

A Faixa de Dobramento Sergipana, de idade neoproterozóica, é um cinturão orogênico de direção ONO-ESSE, situado entre o Cráton do São Francisco, ao sul, e o Maciço Pernambuco-Alagoas, ao norte. De acordo com suas feições estruturais e metamórficas, cujas intensidades diminuem de norte para sul, ela pode ser dividida em quatro zonas, ordenadas no mesmo sentido (D'el-Rey Silva, 1999): interna, intermediária, externa e cratônica. A zona interna compreende os domínios Canindé, Poço Redondo e Marancó, enquanto as zonas intermediária, externa e cratônica comprendem, respectivamente, os domínios Macururé, Vaza Barris e Estância. Esses diferentes domínios são limitados por zonas de cisalhamento contracionais oblíquas, com vergência para SO, que expõem sempre os níveis crustais mais profundos em seu compartimento norte. Apenas as litologias predominantemente psamíticas do Domínio Estância estão presentes na área estudada.

Na figura 1.3 observamos o mapa geológico da área de estudo e a seguir, é apresentada uma descrição sucinta de cada uma das unidades litoestatigráficas que compõem o embasamento adjacente à bacia de Sergipe nessa região, com base nas observações de campo e no trabalho de (Santos et al., 1998).

1.2.1 Embasamento Gnáissico

Ocorre na porção centro-sul da área estudada, limitando-se a oeste com o Grupo Estância em contato falhado desaparecendo para norte e para leste encoberta pelos sedimentos terciários do Grupo Barreiras, e prolongando-se para sul para o Estado da Bahia. Faz parte do Cinturão Móvel Salvador-Esplanada (Barbosa e Dominguez, 1996). Comporta os gnaisses, migmatitos e granitóides do Complexo Metamórfico-Migmatítico, as rochas do Complexo Granulítico, além do enxame de diques da região de Arauá.

Segundo Santos et al. (1998), foram registrados pelo menos dois eventos que afetaram o Cinturão móvel Salvador-Esplanada. Um primeiro evento tangencial, em condições metamórficas da fácies granulito, o outro, transcorrente, em ambiência da fácies anfibolito e até xisto verde, retrometamórfico.

Complexo gnáissico-migmatítico

Aflora em duas faixas alongadas, orientadas na direção NE, margeando uma faixa central do Complexo Granulítico. A faixa ocidental limita-se a norte e oeste com o Grupo Estância e, a leste, com o Complexo Granulítico em contatos assinalados por falhas e/ou zonas de cisalhamento. A faixa oriental apresenta contato oeste falhado em relação às rochas granulíticas desaparecendo para norte e leste por sob os sedimentos terciários do Grupo

Figura 1.2: Esquema ilustrativo da geologia do embasamento adjacente à bacia de Sergipe com demarcação em vermelho das unidades estudadas

Barreiras.

De acordo com sua heterogeneidade de litotipos aflorantes, o Complexo Gnáissico-Migmatítico foi divido em cinco unidades litológicas. A primeira unidade (APg1) é aquela de maior expressão do complexo, sendo composta principalmente por biotita gnaisses migmatíticos de coloração acinzentada, com granulação variando de média a grossa, de composição granítica a granodiorítica, exibindo diferentes graus de migmatização, desde estruturas estromáticas, passando aos tipos nebulítico e schlieren até massas granitóides. Conjuntamente com os gnaisses migmatíticos, é comum a presença de anfibolitos em corpos centimétricos concordantes com a foliação dos gnaisses e igualmente deformados. Com menor freqüência, aparecem, também, intercalações de quartzitos bem recristalizados. A segunda unidade (APg2) é composta por uma associação ortognáissica ácida-básica, invadida por granitóides tardios sieno-monzograníticos. As exposições dessa unidade são raras no estado de Sergipe devido à grande extensão dos sedimentos do Grupo Barreiras que a encobrem. Ortognaisses migmatíticos de composição granodiorítica em diferentes estágios de mobilização (diatexistos predominantes), com enclaves de rochas ultramáficas, caracterizam a terceira unidade (APg3). Suas melhores exposições encontram-se próximas à cidade de Tomar do Geru. A quarta unidade (APg4) é representada por biotita ortognaisses tonalíticos a granodioríticos, de coloração acizentada, de granulação média a grossa e com boa foliação. Ela constitui corpos individualizados na borda oriental da unidade APg1, na interface com o Complexo Granulítico.

Finalmente, a quinta e última unidade do Complexo Gnáissico-Migmatítico (APg5) é a de menor expressão, representada por um único corpo no extremo noroeste da unidade APg3, em contato por falha com os psamitos da Formação Palmares. é constituída por Ortognaisses bandados de composição tonalítica com intercalações de anfibolito sendo o bandamento definido pela alternância de bandas com diferentes concentrações de biotita. Na parte sul do corpo, encontramos rocha granítica de coloração esverdeada, de granulação fina, extremamente homogênea, com megacristais de feldspato de até um centímetro.

Complexo Granulítico

Localiza-se na região centro-sul do estado de Sergipe, constituindo uma faixa alongada na direção SO-NE, em formato de cunha que se estreita para sul, no sentido do Estado da Bahia, separando as duas faixas que compõem o Complexo Gnáissico-migmatítico. O Complexo Granulítico inclui litologias metamorfisadas na fácieis granulítica e rochas que lhe são intimamente associadas. Os ortognaisses são as rochas predominantes, em geral de composição charnoquitíca a charnoenderbítica, menos comumente enderbítica, com freqüentes intercalações de metanoritos. Dentre as litologias associadas, de ocorrêcia mais subordinada, destacam-se biotita gnaisses migmatizados e, também, rochas supracrustais que são os gnaisses kinzigíticos, as rochas calcilicáticas e os quartzitos. Macroscopicamente, os ortognaisses apresentam-se bandados, naturalmente refletindo as diferentes proporções de seus constituintes minerais. São de coloração cinza-esverdeado, de granulação fina a média, foliadas, por vezes fundidos com quartzo-feldspáticos em iguais condições de *facies* granulito.

Vulcanismo de Arauá

Designa um enxame de diques de rochas vulcânicas, de natureza ácida-intermediária, com termos básicos mais subordinados, que se encaixam nas rochas do complexos Gnáissico-Migmatítico e Granulítico. Aflora desde a localidade de Tanque Novo, na porção centroocidental da área, até a altura da cidade de Arauá, a partir de onde desaparece por sob sedimentos terciários do Grupo Barreiras. Esses diques apresentam-se sob a forma de corpos tabulares com espessuras desde alguns centímetros até dezenas de metros (Silva Filho, Bonfim e Santos, 1977), onde predominam os termos dacíticos e riolíticos porfiríticos, representados por rochas de coloração acizentada, de matriz afanítica a fanerítica muito fina, com fenocristais euédricos e subédricos de plagioclásio, k-feldspato e quartzo. A essas litologias, subordinam-se os dique de basalto/diabásio com pórfiros de plagioclásio e amídalas com preenchimento carbonático.

1.2.2 Domínio Estância

O Domínio Estância ou Série Estância, como foi inicialmente definida por Branner (1913), tem seu nome derivado da cidade de Estância localizada no sul de Sergipe. É o domínio mais meridonal e externo da Faixa de Dobramentos Sergipana, limitando-se, ao norte, com o Domínio Vaza-Barris atráves da falha contracional de alto ângulo do Rio Jacaré-Itaporanga. É composto por sedimentos anquimetamórficos (Allard e Tibana, 1966) dominantemente psamíticos, pouco deformados, com estruturas sedimentares bem preservadas, englobando ainda siltitos, argilitos e calcários. De acordo com a diversidade de seus sedimentos, é agrupado nas formações Acauã, Lagarto e Palmares abaixo descritas.

Formação Acauã

Esta é a formação que apresenta menor extensão dentro do Domínio Estância, com poucas exposições no estado de Sergipe. Ao longo do rio Piauí e a sudeste das regiões de Lagarto e Indiaroba encontramos seus melhores registros. Ela é composta por depósitos carbonáticos de natureza variada e a expessura máxima dessa formação foi estimada em cerca de trezendo metros. De acordo com Saes e Vilas-Boas (1986), são identificados ambientes de supramaré, com gipsita e dolomita, com calcarenitos oolíticos e intraclastos nas fácieis intermediárias a sul de Sergipe, onde ocorre explotação para fabricação de cal.

Formação Lagarto

Suas melhores exposições encontram-se nas proximidades da cidade de Lagarto. Seus contatos são falhados com as rochas do embasamento gnáissico e gradacionais com as demais formações do Grupo Estância. Essa formação é constituída por arenitos finos, argilitos, e siltitos laminados, em proporções variáveis, com numerosas estruturas sedimentares preservadas. Essas estruturas são facilmente observadas a noroeste da cidade de Lagarto, na estrada para a cidade de Simão Dias, em escavações para garimpagem de pedras de revestimento, onde siltitos muito litificados exibem marcas onduladas simétricas e assimétricas e gretas de ressecamento. Ainda neste local, no contato com argilitos vermelhos, observam-se várias estruturas de carga e de escape de fluidos. Nessa formação não ocorrem dobramentos significativos, apenas os devidos a basculamentos por falhas normais, e suas camadas possuem mergulhos fracos e regulares.

Formação Palmares

A Formação Palmares é a área mais expressiva no Domínio Estância, com inúmeros afloramentos bem distribuídos e representativos. Seus contatos são tectônicos com as rochas do embasamento gnáissico e gradacionais com as demais unidades do Grupo Estância. Apesar de sua grande abrangência, essa formação não possui uma grande diversidades de litologias, sendo constituída, principalmente, por grauvacas e arenitos finos, feldspáticos, compactos, com lentes de conglomerados polimictos desorganizados, com clastos de gnaisses, quartzo,

quartizitos, carbonatos e xistos.

Figura 1.3: Mapa geológico da área de estudo

CAPÍTULO 2

Conceitos teóricos

2.1 Transporte de calor

Calor pode ser definido como a quantidade de energia térmica transferida entre dois corpos com temperaturas diferentes. A energia térmica entre de um corpo é proporcional a sua temperatura e a transferência de energia faz-se do corpo de maior temperatura para o de menor temperatura. O calor é transportado de um meio para o outro por três mecanismos: condução, convecção e radiação. Nos materiais geológicos, a condução é o mecanismo considerado mais importante no que diz respeito ao transporte de calor. Na condução, a energia é transportada ao londo dos sólidos através da transferência de vibrações das moléculas ou íons na estrutura dos minerais e dos fluidos intersticiais. No mecanismo da convecção, a transmissão do calor envolve o transporte de massa e ocorre principalmente nos fluidos. O processo de transmissão de calor por radiação ocorre por meio de ondas eletromagnéticas (ondas de calor), que se propagam livremente no espaço (Fowler, 1990) e (Halliday et al., 1996).

2.1.1 Fluxo de calor

Se há duas regiões com temperaturas distintas, o calor flui da região mais quente para a mais fria. A condução de calor é regida pela lei de Fourier que estabelece que o fluxo de calor Q entre dois pontos é proporcional ao gradiente de temperatura (∇T) entre eles e é dado pela equação

$$Q = -\lambda \nabla T \tag{2.1}$$

onde λ é a condutividade térmica do material. O sinal negativo na equação 2.1 é para fazer λ positivo já que o fluxo de calor dá-se no sentido contrário ao do gradiente térmico.

Nos materiais isotrópicos, λ é uma grandeza escalar. Já para a maioria dos materiais cristalinos, λ é uma grandeza tensorial possuindo três componentes devido a anisotropia de seus minerais que faz com que λ dependa da energia do fluxo. A equação de condução de calor para o caso tridimensional, com a temperatura variando com x, y, z e t, pode ser escrita

 como

$$\frac{\partial T}{\partial t} = \frac{\lambda}{\rho c_p} \nabla^2 T + \frac{A}{\rho c_p}$$
(2.2)

onde $\partial T/\partial t$ é a derivada temporal do campo escalar T, ρ , c_p e A são a densidade, o calor específico e a taxa de produção de calor radiogênico da rocha, respectivamente, e $\nabla^2 T$ é o laplaciano do campo T. O termo $\lambda/(\rho c_p)$ é denominado difusividade térmica do material.

2.2 Porosidade

Além de sua composição mineralógica as rochas apresentam também espaços vazios ou preenchidos com fluidos em seu interior. Esses espaços vazios são chamados de poros e podem aparecer em uma variedade muito grande de formas e tamanhos. Um parâmetro importante para caracterizar o meio poroso é a porosidade. Define-se porosidade como sendo a fração de espaços vazios existentes numa rocha quando comparada ao seu volume total, expressa em porcentagem ou seja

$$\phi_t = \frac{V_p}{V_t} = \frac{V_t - V_s}{V_t},\tag{2.3}$$

onde V_p é o volume poroso da rocha, V_s o volume de sólidos e V_t volume total da rocha. A porosidade influencia muitas das propriedades físicas das rocha, entre elas a densidade e as propriedades térmicas, a condutividade térmica em particular.

Nas rochas, destacam-se dois tipos ou grupos de porosidades: a porosidade primária e a porosidade secundária. A porosidade primária é aquela que a rocha herda do processo de sedimentação e que evolui durante sua compactação, enquanto que a porosidade secundária é aquela que a rocha herda após sua formação por consequência de esforços mecânicos a que é submetida originando fraturas.

2.3 Propriedades térmicas das rochas

O conhecimento das propriedades térmicas de uma rocha é de grande importância na geofísica em estudos geotérmicos da crosta como também em trabalho de modelagem termo-mecânica de bacias. O conhecimento dessas propriedades também é importante no estudo ajudam da distribuição de calor da terra.

Neste trabalho são estudados a condutividade térmica, a difusividade térmica e o calor específico das rochas de parte do embasamento adjacente à bacia de Sergipe.

2.3.1 Condutividade térmica

Nos estudos sobre condução de calor, um parâmetro importante é a condutividade térmica. Ela é uma medida da maior ou menor quantidade de um material em conduzir calor e equivale ao fluxo de calor transmitido através de uma espessura, numa direção normal à superfície, devido ao gradiente de temperatura e sob condições de estado fixas. Pode ser descrita através da equação

$$\lambda = \frac{Q}{\Delta T / \Delta z},\tag{2.4}$$

na qual o quociente $\frac{\Delta T}{\Delta Z}$ é o gradiente de temperatura unidimensional. A condutividade térmica é expressa em W m^{-1} °C⁻¹, e na maioria das rochas encontradas na superfície terrestre ela varia entre 1 e 7 W m^{-1} °C⁻¹.

Um rocha é constituída por um conjunto de minerais, cada um com valores caracteríticos de condutividade térmica. É de esperar-se então que, ao variar as proporções entre os minerais ou a orientação dos cristais, a condutividade sofrerá modificações. De acordo com o arranjo de íons na estrutura cristalina, os minerais possam apresentar anisotropia. Numa escala macroscópica, rochas que exibem uma orientação preferencial dos grãos minerais também podem apresentar anisotropia.

A condutividade térmica é um parâmetro bem complexo, pois, depende de vários fatores. Dentre eles, estão os minerais constituintes da rocha, a natureza e quantidade de seus fluidos intersticiais, a porosidade, a pressão, a temperatura e a anisotropia na direção de propagação do calor. A obtenção dos valores de condutividade pode ser feita a partir de métodos diretos ou indiretos. Os métodos diretos consistem em medições feitas em laboratório em amostras representativas da área de estudo. Na tabela 2.1, temos os valores de condutividade térmica de algumas rochas e minerais.

Influência da porosidade

Rochas que possuem porosidade abaixo de 1%, não sofrem grande influência pelos espaços gerados pelos poros. Neste constexto estão inclusas as rochas metamórficas e ígneas. O grau de saturação dos poros deve ser considerado, pois os espaços secos aumentam a resistência térmica nos contatos entre os grãos (Reys, 2008). Alguns estudos apontam um aumento linear entre a condutividade térmica e a saturação dos poros para rochas com porosidade próximas de 1% (Clauser e Hueges, 1995). Nas rochas que possuem porosidade maiores, a condutividade sofre um diminuição por conta do aumento da quantidade de espaços vazios entre os grãos.

Influência da temperatura

A condução é o principal meio responsável pelo transporte de calor, desde temperaturas

Rochas	$\lambda (\mathrm{W} \ m^{-1} \ ^{\circ}\mathrm{C}^{-1})$
Sal	5,5
Peridotito	3,8
Arenito	3,2
Carbonato	2,2 a 2,8
Gnaisse	2,7
Granito	2,6
Ardósia	2,4
Gabro	2,1
Minerais	$\lambda \ (W \ m^{-1} \ ^{\circ}C^{-1})$
Quartzo	7,2
Magnetita	4,61
Diopsídio	4,23
Zircão	3,90
Moscovita	3,89
Faialita	3,85
Almandina	3,66
Clorita	3,06
Hornblenda	2,91
Serpentina	2,41
Albita	2,34

Tabela 2.1: Condutividade térmica de rochas e minerais (segundo Fowler, 1990)

ambientes até centenas de graus sendo esta inversamente proporcional a temperatura. Isto pode ser explicado pelo diferenciado comportamento termal em cada mineral que constitui a rocha, comportamente este que gera uma resistência entre os grãos, diminuindo a facilidade de movimentação do fluxo de calor. O aumento da temperatura de 1000 à 1200 °C, ocasiona uma diminuição da condutividade térmica. A transferência de calor por radiação só começa contibuir com eficiência no calor transmitido a partir de 1200 °C.

Influência da pressão

Nas rochas com porosidade abaixo de 1 %, como as rochas ígneas e metamórficas, a influência da porosidade no valor de λ é desprezível (Reyes, comunicação pessoal). Somente em pressões altas as propriedades físicas da rocha podem ser alteradas devido ao fechamento dos poros. Esse não é o caso de rochas sedimentares nas quais a porosidade fica muito acima de 1%.

Influência da anisotropia

Um corpo é anisotrópico em relação a uma propriedade quando esta propriedade tem valores diferentes segundo uma direção considerada. Resultados diferenciados de condutividade térmica, em diferentes direções, numa mesma rocha pode ser justificado pela anisotropia dos cristais formadores da rocha, pela anisotropia da rocha e pela orientação de falhas e fraturas da rocha (Schon, 1996). Nos estudos de condução de calor, a anisotropia tem sido estudada nos minerais e nas rochas, onde os minerais em sua maioria, têm-se mostrado anisotrópicos. Já nas rochas ígneas e metamórficas, em muitos casos, por conta da orientação aleatória do minerais, a anisotropia pode ser considerada desprezível. Entretanto, para Clauser e Huenges (1995) é viável considerar o fator anisotrópico em rochas com altas condutividades térmicas e ricas em quartzo.

2.3.2 Difusividade térmica

A difusividade térmica é o parâmetro que mede a capacidade do material de difundir a energia térmica em relação a sua capacidade de armazená-la, ou seja, ela expressa a qualidade do material em difundir calor. Materias com valores elevados de difusividade térmica responderão rapidamente as mudanças nas condições térmicas a elas impostas, enquanto que materias com valores reduzidos de difusividade térmica responderão mais lentamente. Este parâmetro é importante na determinação da evolução de sistemas que sofrem processos de aquecimento e ou resfriamento. A difusividade térmica tem dimensão de área por unidade de tempo $(m^2 s^{-1})$ e relaciona-se com a condutividade térmica λ , através da equação

$$\alpha = \frac{\lambda}{\rho c} \tag{2.5}$$

onde **c** é o calor específico e ρ a densidade.

A tabela 2.2 apresenta os valores da difusividade térmica em $10^{-6}m^2s^{-1}$ de algumas rochas.

Rocha	$\alpha({\rm x}10^{-6}m^2s^{-1})$
Cálcario	1,1
Ardósia	1,2
Arenito	1,6
Carvão betuminoso	$0,\!15$
Sal	3,1
Gnaisse	1,2

Tabela 2.2: Difusivbidade térmica de algumas rochas

2.3.3 Calor específico e capacidade calorífera volumétrica

A capacidade calorífera determina a variação de temperatura de um determinado corpo ao receber certa quantidade de calor, ela representa a qualidade de um corpo em armazenar calor. É representada pela equação

$$C = \frac{\Delta Q}{\Delta T},\tag{2.6}$$

onde ΔQ é a quantidade de calor fornecida ao corpo e ΔT a variação de temperatura do corpo.

A capacidade térmica caracteriza o corpo e não o material que o constitui. A capacidade calorífeca de um corpo é numericamente igual à quantidade de calor necessária para elevar sua temperatura em um grau, e é denominada de capacidade calorífera volumétrica quando expressa em unidade de volume (C_v) . Quando é representada por unidade de massa temos o chamado calor específico (c), em J Kg^{-1} °C⁻¹, como mostra a seguinte equação

$$c = \frac{C}{\rho},\tag{2.7}$$

sendo ρ a densidade do material.

Nos estudos de rochas, normalmente supõe-se o processo de transferência de calor como sendo um processo adiabático, admitindo-se a ocorrência de uma expansão térmica. Este efeito de aumento de volume é mais relevante nas rochas com maior porosidade.

2.4 Radioatividade

A radioatividade está ligada diretamente ao núcleo do átomo. É um fenômeno pelo qual os núcleos atômicos sofrem transformações e emitem radiações, podendo, nesse processo, formar novos elementos químicos. Desde sua descoberta no século XIX por Henri Becquerel, ocasionou efeitos importantes nas ciências da Terra e é de grande inportância em estudos geotérmicos.

2.4.1 Decaimento radioativo

Desintegração radioativa é a desintegração espôntanea de um núcleo instável mediante a emissão de particulas α , e ou, β e também de radiação gama, dando origem a um novo elemento. Um núcleo que sofre desintegração espontânea é chamada de radionuclídeo.

Lei do decaimento radioativo

A desintegração de qualquer elemento radioativo é um evento aleatório, independente de átomos vizinhos, das condições físicas (pressão e temperatura) e estado químico do átomo. A probabilidade de um determinado tipo de núcleo sofrer decaimento radioativo por unidade de tempo, é uma constante denominada constante de decaimento ou constante de desintegração e representada por λ .

Se um determinado núcleo desintegra-se, a taxa de decaimento de N núcleos é proporcional a N, ou seja,

$$\frac{dN}{dt} = -\lambda N \tag{2.8}$$

Se tivermos, inicialmente, N_o núcleos idênticos, o número N que sobreviverá depois de um tempo t será

$$N = N_o e^{-\lambda t},\tag{2.9}$$

que é a equação que representa a lei do decaimento radioativo.

Meia-vida

A meia-vida de um radionuclídeo, representada pela letra T, é definida como o tempo em que um número inicial de núcleos radioativos é reduzido à metade. Da equação 2.9, obtêm-se

$$T = \frac{ln2}{\lambda},\tag{2.10}$$

Atividade

Ao número de desintegrações de um dado radionuclídeo, por unidade de tempo, denominase atividade representada por A.Ela é a taxa de decaimento definida pela equação 2.8 tomado com o sinal positivo, ou seja

$$A = \lambda N. \tag{2.11}$$

2.4.2 Série radioativa

É possível que um nuclídeo pai decaia para um nuclídeo filho que por sua vez decaia para outro nuclídeo e assim sucessivamente, até chegar à estabilidade. Denominamos o conjunto de decaimento sucessivos de uma série radioativa.

Suponhamos que um núcleo pai, denotado por N_1 , tenha uma constante de decaimento λ_1 e produz um núcleo filho também radioativo N_2 o qual decai com uma constante de

Figura 2.1: Gráfico exponencial da Lei de decaimento radioativo

decaimento λ_2 , que por sua vez decai para um núcleo estável N_3 . O sistema pode ser descrito pelas equações

$$\frac{dN_1}{dt} = -\lambda_1 N_1. \tag{2.12}$$

$$\frac{dN_2}{dt} = \lambda_1 N_1 - \lambda_2 N_2. \tag{2.13}$$

$$\frac{dN_3}{dt} = \lambda_2 N_2. \tag{2.14}$$

Admitindo-se como condições iniciais $N_1=N_1^o,\,N_{13}=0$
e $N_3=0$ em t=0 , temos as seguintes equações

$$N_1(t) = N_1^o e^{-\lambda_1 t}.$$
 (2.15)

$$N_2(t) = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_1^o(e^{-\lambda_1 t} - e^{-\lambda_2 t}).$$
(2.16)

$$N_{3}(t) = N_{1}^{0} \left(1 + \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}} e^{-\lambda_{2}t} - \frac{\lambda_{2}}{\lambda_{2} - \lambda_{1}} e^{-\lambda_{1}t}\right)$$
(2.17)

como soluções das equações 2.12, 2.13, 2.14 para N_1 , N_2 e N_3 , respectivamente.

2.4.3 Equilíbrio radiotivo secular

Dizemos que uma série radioativa está em equilíbrio secular quando as atividades de todos os membros da série são iguais e não muda dentro de um determinado intervalo de tempo.

Podemos então escrever

$$\frac{dN_1}{dt} = constante. (2.18)$$

$$\lambda_1 N_1 = \lambda_2 N_2 = \lambda_3 N_3 = \dots = \lambda_{n-1} N_{n-1} = \lambda_n N_n, \,.$$
(2.19)

ou

$$A_1 = A_2 = A_3 = \dots = A_{n-1} = A_n,$$
(2.20)

As igualdades mostradas em 2.19 e 2.20 são inconsistentes já que o núcleo tipo 1 decaindo reduz o termo $\lambda_1 N_1 = A^1$ desfazendo as igualdades. Pode-se conseguir um equilíbrio aproximado se λ^1 for muito menor que os outros λ da série de modo que $\lambda_1 N_1$ possa ser considerado constante. A esse equilíbrio, denomina-se equilíbrio secular. Esse é o caso da série do U^{238} cujo λ é da ordem de $10^{-10} a^{-1}$ enquanto para outros membros da série λ é no mínimo $10^{-6} a^{-1}$.

2.4.4 Urânio, tório e potássio

Grande parte do calor no interior da terra é gerado pela transformação das energias cinéticas das particulas de radiação e dos núcleos de recuo em calor na interação com o material terrestre devido principalmente aos radioisótopos dos elementos urânio, tório e potássio. A presença destes elementos nas rochas fundamenta-se na existência de certos minerais. O U^{238} (T_{238} =4,468 Ga), U^{235} (T_{235} =0,704 Ga) e Th^{232} (T_{232} =14,01 Ga) constituem as três séries radioativas naturais que terminam nos isótopos estáveis do chumbo Pb^{206} , Pb^{207} e Pb^{208} , respectivamento, enquanto que o potássio possui um único radioisótopo natutal, o K^{40} . Essas três séries e mais o K^{40} respondem por cerca de 98% do calor gerado na terra.

Apresentando-se com uma concentração média de 2,5 ppm na crosta continental, o urânio é um metal, que participa nas rochas como elemento traço e que possui ambos os isótopos naturais instáveis os quais constituem duas das três séries radioativas naturais, a do U^{238} e a do U^{235} . O urânio é mais abundante em rochas de composição ácida, como os granitos e riolitos, com teores de 2 a 8 ppm. Os basaltos contêm cerca de 0,1 ppm e as rochas ultrabásicas, salvo em raras exceções, alguns centésimos de ppm.

O tório é um elemento metálico com um único isótopo natural, o Tl^{208} ,o qual é radioativo, e que, também, aparece como elemento traço na crosta terrestre. É encontrado em quantidades pequenas na maioria das rochas e solos, onde é aproximadamente três vezes mais abundante do que o urânio. O potássio pode ser definido como um dos componentes principais da crosta terrestre, com concentração média de 2,5 % na crosta continental e 0,4 % na crosta oceânica. Os principais minerais à base de potássio são: os feldspatos potássicos, principalmente o ortoclásio e a microclina, com aproximadamente 13 % de K; e as micas, biotita e moscovita, com aproximadamente 8 % de K. Conseqüentemente, as rochas ácidas, como os granitos, sienitos, sienogranitos e leucogranitos, apresentam altos teores de potássio, contrariamente às rochas básicas (gabros, peridotitos etc). Ao contrário do urânio e do tório, o potássio é um elemento muito freqüente nos minerais, principalmente nos alumino-silicatos como os feldspatos potássicos e as micas.

CAPÍTULO 3

Métodos Analíticos

Neste capítulo descreveremos todos os métodos analíticos utilizados para o tratamento das amostras deste trabalho. Neste contexto estão inseridos as medidas de condutividade, difusividade térmica e calor específico, como também a obtenção das concentrações dos radioelementos potássio, urânio e tório e da taxa volumétrica de produção de calor radiogênico.

3.1 Medidas dos parâmetros térmicos

Para a obtenção da condutividade térmica, difusivisidade térmica e capacidade calorífera utilizamos o analizador de propriedades térmicas QuicklineTM - 30, da Anter Corporation (figura 3.1). Esse medidor está equipado com sondas planas, calibradas para medir condutividade térmica na faixa de 0,30 a 7,0 $Wm^{-1}K^{-1}$. Ele aplica a técnica da medição de transientes de temperatura no qual submete-se o material a um pulso de calor por um sensor e registra-se sua resposta no decorrer do tempo. Essa resposta é fornecida num intervalo de tempo menor que 10 minutos. O analisador fornece a condutividade térmica, a difusividade térmica e a capacidade calorífera volumétrica. Obtivemos o calor específico pela equação 2.7.

As amostras em análise possuem dimensões laterais acima de 6 cm, espessuras maiores que 3 cm e são polidas para um melhor contato da sonda do aparelho com as faces das rochas, evitando a perda de calor e assim diminuindo os erros de leitura.

3.2 Medidas de K, U e Th

Para a determinação das concentrações dos radioisótopos potássio, urânio e tório utilizamos o método da espectrômetria gama, o mais utilizado em laboratório para esta finalidade. Uma vantagem deste método é que ele não é destrutivo, ou seja, a amostra da rocha não precisa sofrer qualquer tratamento químico para ser analisada. Esta técnica já foi descrita de forma bem clara por vários autores como Adams e Gasparine (1970), Alves Jr. (2004) e Sapucaia (2004), sendo ela de ótima eficácia e de custo baixo. Medimos esses teores

Figura 3.1: Aparelho QuicklineTM - 30

no campo, diretamente no afloramento e no laboratório em amostras de rochas moídas. Mesmo que a medida de campo seja inflenciada pela emanação gama do solo e das rochas curcunvizinhas, ela permite distinguir corpos com níveis radioativos diferentes, ajudando a decidir a necessidade ou não de mais de uma amostragem do local.

Em campo, as medidas das concentrações do K,U e Th foram determinadas utilizando um espectrômetro portátil, modelo GS-512 da Geofisika, com um detector de cintalação de INa(Tl) de 76,2 x 76,2 mm (figura 3.2). Este sistema possui 512 canais e uma memória de 512 Kb, onde 4000 espectros podem ser armazenados. Na medida in situ utilizamos um tempo de contagem de 3 minutos com o detector apoiado em faces planas das rochas. O ruído de fundo, a ser subtraído de espectro, tem como fontes principais, a radiação cósmica, a radiação atmosférica e o ruído eletrônico do próprio instrumento, o qual é definido e introzido no sistema computacional do espectrômetro através de quatro parâmetros.

Em laboratório, para a obtenção dos teores, as amostras coletadas são pulverizadas hà uma mesma granulometria e acondicionadas em potes plásticos de 125 mm x 40 mm. Utilizamos dois espectrômetros gama, SEG3 E SEG4, ambos com detectores de cintilação de INa(Tl) da Harshaw com 102 mm de diâmetro e 76 mm de altura. Para reduzir a radiação de fundo, estes detectores estão instalados no interior de castelos independentes, ambos com dimensões externas de 76 x 86 x 76 cm e paredes de 12 cm de chumbo e 0,5 cm de cobre (internamente), situados numa sala subterrânea climatizada, localizada no Laboratório de Física Nuclear Aplicada (LFNA) da UFBA (figura 3.3). O programa para obtenção dos espectros e tratamento de dados foi o MAESTRO B32, versão 5.34.

Figura 3.2: Medidas de campo com o espectrômetro portátil

Figura 3.3: Espectrômetro gama: Castelos de chumbo

3.2.1 Análise dos espectros

As contribuições dos emissores gama presentes em uma rocha constitui o chamado espectro da amostra, o qual é obtido da contagem da amostra depois de subtraído o ruído de fundo.

Esses emissores são, principalmente, K^{40} , os membros da série do Th^{232} , principalmente o Tl^{208} , o os membros da série do U^{238} , destacando-se o Bi^{214} . O uso destes radioisótopos na determinação dos teores de K, U e Th pressupõe que: (i) a razão K^{40}/K_{total} seja constante nas rochas; (ii) a série do U^{238} esteja em equilíbrio secular - para termos a atividade do Bi^{214} igual àquela do U^{238} ; e (iii) a série do Th^{232} também esteja em equilíbrio secular.

Aceito estes pressupostos, definimos três faixas distintas de energia no espectro, denominadas de janelas, onde cada uma delas inclua um dos picos de interesse. A janela 1 inclui o fotopico 1460 KeV do K^{40} , a janela 2 inclui o fotopico de 1760 KeV do Bi^{214} , e a janela 3 o fotopico de 2614 KeV do Tl^{208} . Como no espectro da amostra existem apenas contribuições dos elemntos K,U e Th, a massa S_N do elemento S, na amostra N, é obtida pela seguinte expressão

$$S_N = \sum m_{ij} A_{j,N} \tag{3.1}$$

onde i representa o elemnto químico (K=1, U=2 e Th=3), j indica as janelas (1,2 e 3), $A_{j,N}$ as taxas de contagem da amostra N na janela j (subtraído o ruído de fundo e $m_{i,j}$ os coeficientes a determinar. A letra S é o símbolo do elemento químico (K, U e Th) e representa a massa.

A massa dos três elementos na amostra podem ser escritas na forma de três equações

$$K_N = \sum_{j=1}^3 m_{1j} A_{j,N} \tag{3.2}$$

$$U_N = \sum_{j=1}^3 m_{2j} A_{j,N} \tag{3.3}$$

$$Th_N = \sum_{j=1}^3 m_{3j} A_{j,N} \tag{3.4}$$

Existem três incógnitas em cada uma destas equações, totalizando nove incógnitas m_{ij} . Estes coeficientes são determinados medindo-se as atividades $A_{j,N}$ nas três janelas (subtraído o ruído de fundo) de três padrões (N=1, N=2 e N=3), sendo que as massas de K, U e Th nesses padrões são conhecidas.

Tendo em mãos os valores dos coeficientes m_{ij} , as concentrações de potássio C_K (em %), as concentrações de C_U (em ppm) e as concentrações de tório C_{Th} (em ppm) na amostra são obtidos pelas equações

$$C_K = \frac{10^2}{Mt} (m_{11}J_1 + m_{12}J_2 + m_{13}J_3)$$
(3.5)

$$C_U = \frac{10^6}{Mt} (m_{21}J_1 + m_{22}J_2 + m_{23}J_3)$$
(3.6)

$$C_{Th} = \frac{10^6}{Mt} (m_{31}J_1 + m_{32}J_2 + m_{33}J_3)$$
(3.7)

onde M é a massa da amostra, t é o tempo de contagem e J_1 , J_2 e J_3 são as contagens no tempo t (subtraído o ruído de fundo) nas janelas 1, 2 e 3, respectivamente. É importante enfatizar que estas equações só são válidas se as amostras e os padrões forem contados na mesma geometria.

3.2.2 Definição das janelas

Ianola	Fotopico principal	Faiyas do oporgia	Faiyas do oporgia
Janeia	rotopico principar	Faixas de ellergia	Paixas de ellergia
	(keV)	Detector 3	Detector 4
		(keV)	(keV)
Janela 1	1461	1192,9 a 1591,7	1178 a 1584
Janela 2	1764	1628,9 a $2038,9$	1622 a 2039,4
Janela 3	2614	2076,23 a 2855,2	2077,4 a 2904,7

Na tabela 3.1 apresentamos as faixas de energia que foram utilizadas no laboratório e o fotopico principal incluído em cada janela.

Tabela 3.1: Janelas dos espectros gama para a determinação dos teores de K, U e Th com os detectores 3 e 4.

3.2.3 Geometria de contagem

Um fator importante na calibração absoluta é a geometria de contagem. Como apenas parte da radiação emitida pela amostra é detectada pelo detector, faz-se necessário que a geometria de contagem seja a mesma para os padrões e para as amostras para que se possa comparar as contagens dos padrões e das amostras e, assim, calcular as concentrações absolutas. Para isto, faz-se necessário que as amostras e padrões sejam condicionadas em vasilhames semelhantes e posicionados num mesmo modo no detector. Ademais, as amostras devem ter densidades não diferido em mais que 20% para reduzir efeitos de auto absorção. As massas das amostras variaram de 800 a 1100g. com a maioria deles em torno de 900g e foram acondicionadas em potes idênticos de plástico.

3.2.4 Padrões

Os padrões combinados em utilizados neste trabalho foram preparados diluindo-se alíquotas dos padrões RGK-1, RGU-1 e RGTh-1, fornecidas pela Agência Internacional de Energia Atômica (AIEA), em uma matriz de quartzito, onde se tem desprezíveis os teores de K, U e Th. A tabela 3.2 descreve os teores dos padrões RGK-1, RGU-1 E RGTh-1.

Padrão	K(%)	U(ppm)	Th(ppm)
RGK-1	44.8 ± 0.30	< 0,001	< 0,01
RGU-1	> 0,01	$400,00 \pm 0,30$	$0,\!61 \pm 0,\!30$
RGTh-1	$0,019 \pm 0,010$	$6,26 \pm 0,42$	$800,0 \pm 16$

Tabela 3.2: Teores dos padrões RGK-1, RGU-I e RGTh-1 fornecidos pela (AIEA).

Na tabela 3.3 estão as composições dos padrões 1, 2 e 3 utilizadas neste trabalho, com a indicação da massa e a concentração dos elementos K, U e Th.

Padrão	Massa	Massa do	Teor do	Massa do	Teor do	Massa do	Teor do
	total	potássio	potássio	urânio	urânio	tório	tório
	(g)	(g)	(%)	(g)	(ppm)	(g)	(ppm)
1	838,20	41,91	5,00	$1,676 \ge 10^{-3}$	2,00	$4,191 \ge 10^{-3}$	$5,\!00$
2	836,53	4,183	0,50	$1,255 \ge 10^{-2}$	15,00	$4,183 \ge 10^{-3}$	$5,\!00$
3	834,17	4,171	0,50	$1,668 \ge 10^{-3}$	2,00	$3,336 \ge 10^{-2}$	40,00

Tabela 3.3: Dados das massas e dos teores de K, U e Th dos padrões combinados.

3.2.5 Obtenção das equações de concentração

A partir das equações 3.2, 3.3 e 3.4 e os valores da tabela 3.3, determinam-se os coeficientes m_{ij} , os quais, substituídos nas equações 3.5 a 3.7 definem as equações que detreminam as concentrações de potássio(%), urânio(ppm) e tório(ppm) para o detector 3

$$C_K = \frac{1}{M} t(1511, 65J_1 - 2633, 29J_2 - 357, 81J_3)$$
(3.8)

$$C_U = \frac{1}{M} t(2065, 09J_1 + 17125, 57J_2 - 7426, 30J_3)$$
(3.9)

$$C_{Th} = \frac{1}{M} t(14511, 52J_1 - 11495, 78J_2 + 30441, 60J_3)$$
(3.10)

e para o detector 4

$$C_K = \frac{1}{M} t(1046, 52J_1 - 1796, 19J_2 - 195, 09J_3)$$
(3.11)

$$C_U = \frac{1}{M}t(-60,915J_1 + 12773,28J_2 - 6019,57J_3)$$
(3.12)

$$C_{Th} = \frac{1}{M} t(55, 424J_1 - 6662, 57J_2 + 26829, 28J_3)$$
(3.13)

Nessas equações, M é a massa da amostra em gramas, J_1 , J_2 e J_3 são as contagens no tempo t nas janelas 1,2 e 3, respectivamente e t é o tempo de contagem, em segundos.

3.2.6 Nível crítico, limite de detecção e limite de determinação quantitativa

Para os valores obtidos neste trabalho, utilizamos as equações descritas por Currie (1968) para obtermos o nível crítico N_C , o limite de detecção L_D e o limite de determinação quantitativa L_Q

$$N_C = \kappa \sigma_0 \tag{3.14}$$

$$L_D = \kappa^2 + 2N_C \tag{3.15}$$

$$L_Q = \frac{\kappa_Q^2}{2} \left[1 + \left(1 + \frac{4\sigma_0^2}{\kappa_Q^2} \right)^{\frac{1}{2}} \right]$$
(3.16)

 com

$$\sigma_0^2 = \mu_R + \frac{\mu_R}{n} \tag{3.17}$$

onde se assume que o valor médio μ_R é derivado de n observações do ruído de fundo.

Para obtenção do σ_0 , o ruído de fundo foi integrado em 25 horas tomamos $\kappa = 1,645$ e um desvio padrão relativo máximo permitido desejável de 10 % (κ_Q) nas atividades líquidas de todas as janelas.

Nas Tabelas 3.4 e 3.5 mostramos os valores do ruído de fundo, do nível crítico e dos limites de detecção e de determinação, em contagem por hora (cph), nas três janelas dos detectores 3 e 4.

Detector 3	or 3 Ruído de fundo Nível crítico		Limite de detecção	Limite de determinação
	(cph)	$N_C \ (\mathrm{cph})$	L_D (cph)	L_Q (cph)
Janela 1	2711 ± 73	$17,30 \pm 0,46$	$34,37 \pm 092$	$106,2 \pm 2,9$
Janela 2	697 ± 26	$8,\!68 \pm 0,\!46$	$17,\!48 \pm 0,\!65$	$54,8 \pm 2,0$
Janela 3	549 ± 23	$8,43 \pm 0,35$	$15,53 \pm 0,65$	$48,9 \pm 2,0$

Tabela 3.4: Ruído de fundo, nível crítico e limites de detecção e de determinação para o detector 3, espressos em contagem por hora.

Detector 4	ector 4 Ruído de fundo Nível crític		Limite de detecção	Limite de determinação
	(cph)	$N_C \ (\mathrm{cph})$	L_D (cph)	L_Q (cph)
Janela 1	2743 ± 52	$17,23 \pm 0,32$	$34,57 \pm 0,66$	$106,8 \pm 2,9$
Janela 2	512 ± 25	$7,\!44 \pm 0,\!36$	$15,00 \pm 0,73$	$54,8 \pm 2,0$
Janela 3	488 ± 18	$7,27 \pm 0,35$	$14,\!64 \pm 0,\!54$	$48,9 \pm 2,0$

Tabela 3.5: Ruído de fundo, nível crítico e limites de detecção e de determinação para o detector 4, espressos em contagem por hora.

3.2.7 Taxa volumétrica de produção de calor radiogênico

Os principais radioisótopos que se encontram naturalmente nas rochas são os K^{40} e os membros das famílias do urânio e do tório. Ao calor gerado nas rochas, resultado do decaimento radioativo destes isótopos instáveis, denominamos de calor radiogênico. Esse calor é produzido no processo de absorção pelas rochas das energias cinéticas das partículas emitidas e dos recuos dos núcleos, como também pela absorção da energia de radiação gama em sua interação com a matérias que constitui a rocha.

A taxa de produção de calor radiogênico nas rochas é uma propriedade petrofísica, isotópica e que não sofre influência da pressão e temperatura locais, dependendo exclusivamente dos teores dos litófilos K, U e Th e das constantes de produção de calor radiogênico (Q_i) , de cada elemento, as quais dependem da meia vida dos radionuclíodeos e fração da energia do decaimento absorvida pela rocha. A constante Q_i é dada por:

$$Q_i = \frac{N_A ln2}{M_i T_i} E_i, \tag{3.18}$$

onde, N_A é o número de Avogrado, M_i e T_i são a massa atômica e a meia-vida do radioisótopo, respectivamente e E_i é a energia absorvida. Os valores de Q para os principais radioisótopos que geram calor estão apresentados na tabela 3.6.

Radioisótopo	Q (W kg^{-1})
K (natural)	3,48 X 10^{-9}
U^{238}	9,17 X 10^{-5}
U^{235}	$5,75 \ {\rm X} \ 10^{-4}$
U (natural)	9,52 X 10^{-5}
Th(natural)	$2,56 \ge 10^{-5}$

Tabela 3.6: Taxa de produção de calor dos principais radioisótopos naturais.

A potência de calor radiogênico, A, gerado por quilo de rocha é, portanto, dada por

$$A = Q_i C_i, \tag{3.19}$$

onde C_i é a concentração do radioelemento em peso. Considerando os valores Q dos radioelementos dados na tabela 3.6, a potência gerada de calor radiogênico (A) em μWkg^{-1} (quilo de rocha) é expressa por:

$$A = 10^{-5} (3,48C_K + 9,52C_U + 2,56C_{Th}), \qquad (3.20)$$

onde, C_K é dado em porcentagem e C_U e C_{Th} em ppm. A partir desta expressão podemos obter A em μWm^{-3} (volume de rocha):

$$A = 10^{-5}\rho(3, 48C_K + 9, 52C_U + 2, 56C_{Th}), \qquad (3.21)$$

onde ρ é a densidade da rocha.

3.2.8 Medidas de densidade

Determinamos a densidade das amostras de rocha utilizando um picnômetro com água e o procedimento desenvolvido por Oliveira (2006). Este dispositivo constitui-se de um tubo cilíndrico de acrílico com tampa nas duas extremidades, cujo volume é um pouco maior que o das amostras a serem analisadas, para minimizar o erro relativo nas medidas. A tampa
inferior é colada e serve de base do cilindro; a superior possui um pequeno orifício de 2 mm de diâmetro aproximadamente próximo à borda, o qual permitirá a saída do ar quando a tampa é colocada no cilindro.O volume do dispositivo é determinado pela massa de água necessária para preenchê-lo tampado e sem a presença de bolhas de ar no interior (m_1) .

Em primeiro tempo as amostras são lavadas e colocadas em estufa, para secagem total para podermos medir o peso das amostras secas (m_{am}) . Num segundo passo, introduz-se a amostra, previamente saturada no cilíndro vazio, visando a determinação da massa de água que será adicionada para preencher o restante do volume tampado, sem deixar bolhas de $ar(m_2)$. O volume externo da amostra é obtido por

$$V_{ext} = m_1 - m_2 \tag{3.22}$$

onde a densidade da água é considerada 10³ kg m^3 . Conhecidos m_{am} e $V_{ext},$ a densidade da amostra ρ é

$$\rho = \frac{m_{am}}{V_{ext}} \tag{3.23}$$

CAPÍTULO 4

Resultados e Discussões

Neste trabalho coletamos 230 amostras e dividimos a área de estudo em seis litologias predominantes os granitos, os quartzitos, os granulitos, os gnaisses, os ortognaisses e os metarenitos. Nelas determinamos os teores de potássio, urânio e tório, a produção de calor radiogênico, a densidade, a condutividade térmica, a difusividade térmica e capacidade calorífera. Em algumas amostras, não fizemos algumas dessas determinações devido a inadequação das amostras para certas medidas. A medição das propriedades térmicas (condutividade térmica, difusividade térmica e capacidade calorífera) foi a mais prejudicada neste aspecto resultando em que somente 63 amostras foram analisadas. Devido a este fato, a correlação entre estes parâmetros foi realizada como um todo, sem a correlação de litologia por litologia, diferente da análise dos teores de potássio, urânio, tório e da taxa de produção de calor radiogênico, onde cada litologia foi analisada individualmentecada para uma melhor avaliação dos dados. Na construção dos gráficos, para os valores não detectados admitimos o valor 0,00 (nd)e os valores anômalos de urânio e tório só foram utilizados nos gráficos de dispersão.

4.1 Potássio

Os teores de K estão apresentados no apêndice B. Eles variam de 0,01 a 4,88 % com média de $2,24 \pm 1,28$. Observa-se que os granitos , os granulitos ácidos, os granulitos intermediários e os ortognaisses são as rochas com as concentrações mais elevadas deste elemento.

Já os metarenitos apresentam teores intermediários de K, variando de 0,23 a 3,38 % sendo que a maioria das amostras encontra-se entre 1,7 a 2,5 %. A figura 4.1 mostra a dispersão dos teores de k nas principais unidades litológicas . Os quartzitos, apresentam os menores teores de potássio variando entre 0,00 e 0,21%.

Usando os dados do apêndice B, a figura 4.2 salienta os teores de potássio através do mapa de isoteores, ressaltando as unidades litológicas que apresentam teores elevados do elemento K.

4.2 Urânio

As concentrações de urânio determinadas na área de um modo geral, variam entre 0,03 e 9,38 ppm, mas, em uma amostra de rocha ortognaisse cinza-escuro foi detectada concentração de 42,55 ppm (apêndices A e B). Para o urânio, este teor é considerado anômalo e devido a este aspecto não foi incorporado ao conjunto de dados utilizados na construção do mapa de isoteores de urânio da área de estudo (figura 4.3). Os quartzitos, apresentaram teores baixos, variando entre 0,29 a 0,90 ppm. Na figura 4.4 onde são apresentadas as relações entre os elementos K, U e Th observamos que altos teores de urânio estão relacionados com altas concentrações de potássio e tório.

A figura 4.5 mostra a dispersão dos teores de urânio nas principais unidades litológicas da área de estudo. Os quartzitos apresentaram os menores teores de U variando entre 0,19 a 2,49 ppm.

4.3 Tório

O teor de tório nas amostras analisadas varia entre 0,42 e 54,86 ppm, mas, encontramos valores de tório relativamente altos como 65,37, 68,38, 78,43, 93,24 e 99,72 ppm nos granulitos ácidos e ortognaisses. A figura 4.7 apresenta o mapa de isoteores do Th da área de estudo usando como dados as medidas do apêndice 2. Na figura 4.4, observa-se que os teores altos de U e Th correspondem a altos teores de K. Na mesma figura observa-se que os teores de U e Th se relacionam, valores altos de U correspondem a valores altos de Th.

A figura 4.6 mostra a dispersão dos teores do tório nas principais unidades litológicas da área de estudo.

4.4 Densidade

Foram calculadas as densidades de 226 amostras. Seus valores variam aproximadamente entre 2,5 e 3,1 x 10^3 kg m^{-3} . Estes respectivos valores foram utilizados no cálculo da taxa de produção do calor radiogênico, e estão apresentados no apêndice A. Na figura 4.8 observamos a dispersão dos valores de densidade nas unidades da área de estudo e as densidades médias calculadas para as diferentes litologias são as mostradas na tabela 4.1.

4.5 Taxa de produção de calor radiogênico

Os valores das taxas de produção volumétrica de calor radiogênico se encontram no apêndice B. De acordo com a tabela 4.1 observamos que as litologias que apresentam os maiores valores médios de produção volumétrica superficial de calor radiogênico são os granitos e ortognaisses com 2,940 \pm 1,885 e 2,265 \pm 2,624 μWm^{-3} , respectivamente. Na figura 4.10 temos o mapa de distribuição das taxas de produção de calor radiogênico da área de estudo.

Os quartzitos pouco contribuem para a taxa de produção de calor radiogênico da área por apresentar a menor taxa média de produção superficial de calor radiogênico, 0,339 \pm 0,297 μWm^{-3} .

4.6 Condutividade térmica

Os valores de condutividade térmica variaram entre 0,35 e 5,86 $Wm^{-1}K^{-1}$. Na figura 4.11 vemos a dispersão dos valores de condutividade térmica, difusividade térmica e calor específico nas litologias estudadas.

Nos quartzitos encontramos os maiores valores de condutividade térmica. Eles variam de 2,32 a 5,86 W $m^{-1}K^{-1}$. Este alto valor é explicado pela grande quantidade de quartzo que o compõe. Um quartzo é um mineral que possui alta condutividade térmica, assim, quanto maior a sua presença em uma rocha, maior será a condutividade da rocha que o contêm.

Neste trabalho verificamos a existência de correlação entre os parâmetros térmicos e os valores de produção de calor radiogênico. A partir dos gráficos apresentados na figura 4.12 observa-se que não existe nenhum tipo de correlação entre estes parâmetros. Nas rochas em estudo não foram realizadas medidas com as rochas saturadas e só foram realizadas medidas de uma direção, logo, não temos conclusões sobre a influência da saturação de fluido e da anisotropia na condutividade térmica destas rochas.

4.7 Difusividade térmica

A partir dos gráficos apresentados na figura 4.11, observamos que a distribuição dos valores de difusividade térmica foi semelhante a dos valores de condutividade térmica. Os valores de difusividade térmica variaram entre 1,27 e 2,08 x $10^{-6}m^2s^{-1}$. Também analizamos a correlação entre a difusividade e a taxa de produção de calor (figura4.12), constatando não haver correlação entre eles.

4.8 Calor espécifico

Calculamos o calor específico utilizando a equação 2.7, dividindo a capacidade calorífera de cada amostra pela sua respectiva densidade. Os valores variaram entre 0,261 a 0,904 x $10^3 J K g^{-1} K^{-1}$, sendo que nos quartzitos eles variaram entre 1,100 e 1,299 x $10^3 J K g^{-1} K^{-1}$ devido a alta condutividade térmica desta litologia. No gráfico 3 apresentado na figura 4.12, observamos que o calor específico também não possui nenhuma correlação com a taxa de produção de calor radiogênico.

Figura 4.1: Dispersão dos teores de K nas principais litologias da área de estudo

Figura 4.2: Mapa de isoteores do potássio da área de estudo

Litologia	k (%)	U (ppm)	Th (ppm)	Densidade	Calor Radiogênico
				$10^3 \text{ kg} m^{-3}$	$\mu { m W}~m^{-3}$
Granitos	1,05 - 4,39	0,10 - 9,48	0,84 - 50,62	$2,\!652 \pm 0,\!051$	$2,940 \pm 1,885$
Quartzitos	0,00 - 0,21	0,19 - 2,49	0,61 - 4,96	$2{,}575 \pm 0{,}044$	$0,339 \pm 0,297$
Granulitos	0,06 - 4,74	0,00 - 9,08	0,42 - 88,93	$2,757 \pm 0,117$	$1,259 \pm 1,622$
Gnaisses	0,79 - 4,64	0,23 - 5,27	0,73- 57,66	$2,\!671 \pm 0,\!045$	$1,817 \pm 1,561$
Ortognaisses	0,40 - 4,63	0,17 - 9,38	0,56 - 78,43	$2,\!649 \pm 0,\!040$	$2,265 \pm 2,624$
Metarenito	0,23 - 3,38	0,97 - 4,93	1,40 - 21,36	$2,\!659\pm0,\!048$	$1,536 \pm 0,505$

Tabela 4.1: Variação dos teores dos elementos potássio, urânio e tório, densidade média e taxa média de produção de calor radiogênico nas principais litologias da área de estudo

Figura 4.3: Mapa de isoteores de urânio da área de estudo

Figura 4.4: Correlação entre os teores dos elementos potássio, urânio e tório da área de estudo

Figura 4.5: Dispersão dos teores de U nas principais litologias da área de estudo

Figura 4.6: Dispersão dos teores de Th
 nas principais litologias da área de estudo

Figura 4.7: Mapa de isoteores de tório da área de estudo

Figura 4.8: Dispersão dos valores de densidades nas principais litologias da área de estudo

Figura 4.9: Mapa de isovalores de densidade da área de estudo

Figura 4.10: Mapa de isoteores da taxa de produção de calor radiogênico da área de estudo

Figura 4.11: (1)-Dispersão da condutividade térmica nas litologias da área de estudo; (2)-Dispersão da difusividade térmica nas litologias da área de estudo;(3)-Dispersão do calor específico nas litologias da área de estudo

Figura 4.12: (1)- Gráfico correlação condutividade térmica x produção de calor radiogêncio ; (2)- Gráfico correlação difusividade térmica x produção de calor radiogêncio e (3)- Gráfico correlação calor específico x produção de calor radiogêncio

CAPÍTULO 5

Conclusões

Com os resultados obtidos neste trabalho, contribuímos para o conhecimento das propriedades térmnicas de rochas cristalinas do embasamento adjacente à bacia de Sergipe.

Os resultados obtidos pelo método da espectrometria gama, mostram-se satisfatórios pata determinação das concentrações do K, U e Th e da taxa de geração de calor radiogênico, sendo um método simples e de baixo custo.

Os granitos , os granulitos ácidos, os granulitos intermediários e os ortognaisses são as litologias que possuem as mais elevadas concentrações de potássio.

Concluímos que as litologias que mais contribuem para a produção de calor radiogênico na área de estudo são os granitos e os ortognaisses com taxa média de produção de calor de 2,940 ± 1,885 e 2,265 ± 2,624 μWm^{-3} , respectivamente. Já os quartzitos são os que menos contribuem para produção de calor radiogênico, possuindo 0,339 ± 0,297 μWm^{-3} , como taxa média de produção de calor radiogênico.

Os quartzitos apresentaram os valores mais elevados condutividade térmica variando entre 2,32 a 5,86 W $m^{-1}K^{-1}$ e os mais elevados valores de calor específico, entre 1,100 e 1,299 x $10^3 J K g^{-1} K^{-1}$. Estes valores estão diretamente ligados a grande quantidade de quartzo que constitui um quartzito. A condutividade térmica de uma rocha depende da quantidade de quartzo que a constitui e ela cresce com o aumento deste.

Não observamos qualquer correlação entre a taxa de produção de calor radiogênico com a condutividade térmica, difusividade térmica e o calor específico.

Agradecimentos

Quero agradecer primeiramente a Deus, por me proporcionar mais esta vitória.

À minha família, alicerce de minha educação e onde sempre encontrei apoio para realizar meus sonhos, em especial aos meus pais Paulo e Ednilde, meus irmãos Aline, Paulo e Vanessa pelo carinho e apoio, e em mémória a minha querida Vovó Teté.

Ao meu namorado Vinícius, fundamental em minha vida e que através de seu companheirismo e incentivo é também responsável por mais esta conquista.

À todos os professores, em especial ao meu orientador Dr. Roberto Max de Argollo pela confiança, pelo conhecimento passado e pela possibilidade de trabalhar neste projeto. Ao Dr. Moacyr Marinho pela paciência e por toda ajuda em várias etapas deste trabalho. A queridinha Jacira Freitas, não só para mim e sim para todos os alunos.

Ao projeto GEOTERM que possibilitou os recursos para a realização deste trabalho.

Diversos colegas criaram um abiente acadêmico incentivador para o término da minha graduação. Sou grata a turma de 2005.1, onde conheci grandes pessoas e fiz muitos amigos, em especial a Fernanda, Dian, Caio e Liêge, como também a uma pessoa que pude conhecer no decorrer da faculdade e que se transformou em um grande amigo, Leonardo.

A Alexandre e Cristian pela grande paciência e apoio na execução deste trabalho. A Clériston, pelos inúmeros afloramentos quebrados, inúmeros potinhos batidos e pelo coleguismo de sempre.

E agradeço finalmente a todos aqueles que torcem por mim, e que porventura tenha esquecido de citar.

APÊNDICE A

Litologia, localização, e coordenadas das amostras da área de estudo

VGS 84	Y	8728014	8732176	8732158	8734250	8735714	8738098	8738098	8738302	8738302	8744704	8744704	8745282	8746472	8749084	8750138	8750138	8752332	8752332	8754746	8759254	8760192	8762098	8761830	8761680
Datum V	X	660314	659759	659887	657120	655755	641885	641885	642194	642194	638619	638619	637047	636380	635299	634177	634177	632890	632890	627500	622715	621787	619227	616842	614910
Localização		NW de indiaroba	NW de indiaroba	NW de indiaroba	NW de indiaroba	NW de indiaroba	SE-222, Umbaúba/Cristianápolis	SE-222, Umbaúba/Cristianápolis	SE-222, Umbaúba/Cristianápolis	SE-222, Umbaúba/Cristianápolis	SE-222, Umbaúba/Itabaianinha	SE-222, Itabaianinha/ Tobias Barreto													
Litologia		Metarenito	Ortognaisse	Ortognaisse bandado	Granito	Granito	Granulito ácido	Granulito intermediário	Granulito ácido	Granulito ácido	Granulito intermediário	Granulito ácido	Granulito ácido	Granulito intermediário	Ortognaisse	Granitóide	Granitóide	Granitóide	Gnaisse	Ortognaisse bandado	Metarenito	Metarenito	Metarenito	Metarenito	Metarenito
Unidade		INM	APg2	APg2	APg2	APg2	APgl	APgl	APgl	APgl	APgl	APgl	APgl	APgl	Apg1	APg1	APg1	APg1	APg1	APg3	MNp	MNp	MNp	MNp	MNp
Amostra		GeSe 001	GeSe 002	GeSe 003	GeSe 004	GeSe 005	GeSe 006-A	GeSe 006-B	GeSe 007-A	GeSe 007-B	GeSe 008-A	GeSe 008-B	GeSe 009	GeSe 010	GeSe 011	GeSe 012-A	GeSe 012-B	GeSe 013-A	GeSe 013-B	GeSe 014	GeSe 015	GeSe 016	GeSe 017	GeSe 018	GeSe 019

WGS 84	Υ	8762248	8764526	8731853	8726234	8725474	8725774	8730188	8730188	8726342	8726642	8726740	8726740	8723786	8722674	8722674	8722674	8722674	8741584	8741584	8743698	8743698	8745784	8745784
Datum	X	613536	612178	630131	630788	633696	632705	646032	646032	648963	631135	643666	643666	644978	642746	642746	642746	642746	626265	626265	627247	627247	627458	627458
Localização		SE-222, Itabaianinha/ Tobias Barreto	SE-222, Itabaianinha/ Tobias Barreto	Fazenda Nova Esperança	BR-101, divisa Bahia/Sergipe	Fazenda Francisco Benjamim	Fazenda Francisco Benjamim	Fazenda Sr. Dezinho	Fazenda Sr. Dezinho	Fazenda Fundão	BR-101, após divisa BA/SE	Fazenda Cana Brava	Fazenda Cana Brava	Fazenda Cana Brava	Fazenda do Sr. Soquinha	Fazenda do Sr. Soquinha	Fazenda do Sr. Soquinha	Fazenda do Sr. Soquinha	Tomar do Geru - Pedreira do Jaburu	Tomar do Geru - Pedreira do Jaburu	Tomar do Geru - Pedreira Cardoso	Tomar do Geru - Pedreira Cardoso	Tomar do Geru - Pedreira Canavieiras	Tomar do Geru - Pedreira Canavieiras
Litologia		Metarenito	Metarenito	Ortognaisse migmatítico	Granulito ácido	Cataclasito	Gnaisse	Granito	Granito	Metarenito	Ganisse bandado migmatítico	Granito rosa	Granito verde-escuro	Quartzito	Ortognaisse rosado grosso	Ortognaisse rosado fino a médio	Ortognaisse verde-rosado fino	Aplito	Ortognaisse bandado (banda clara)	Ortognaisse bandado (banda escura)	Ortognaisse bandado	Enclave ultramáfico	Ortognaisse cinza-escuro	Ortognaisse bandado
Unidade		INNI	INNI	APg1	APgl	APgl	APgl	APg2	APg2	MNI	APgl	APg2	APg2	INNI	APg2	APg2	APg2	APg2	APg3	APg3	APg3	APg3	APg3	APg3
Amostra		GeSe 020	GeSe 021	GeSe 022	GeSe 023	GeSe 024	GeSe 025	GeSe $026-A$	GeSe $026-B$	GeSe 027	GeSe 028	GeSe $029-A$	GeSe 029-B	GeSe 030	GeSe 031-A	GeSe 031-B	GeSe 031-C	GeSe $031-D$	GeSe $032-A$	GeSe $032-B$	GeSe 033-A	GeSe $033-B$	GeSe 034-A	GeSe 034-B

WGS 84	Υ	8746592	8744542	8746690	8746690	8748632	8748256	8747732	8748234	8748440	8750060	8751402	8751142	8751168	8750976	8751676	8731734	8731181	8731401	8731211	8730959	8730959	8730980	8731040
Datum	Х	626259	625466	624436	624436	623167	621234	678780	618110	617196	616240	615154	618097	620247	621719	626487	630194	630100	629328	628561	627961	627961	627170	626768
Localização		Tomar do Geru - Pedreira Tanque Branco	Tomar do Geru	Tomar do Geru	Tomar do Geru	Tomar do Geru - Pedreira do Jaburu	Tomar do Geru	Fazenda Nova Esperança	Fazenda do Grupo do G. Barbosa	Fazenda Riacho	Fazenda Riacho													
Litologia		Ortognaisse com foliação difusa	Ortognaisse com foliação difusa	Ortognaisse com foliação difusa	Ortognaisse bandado	Metarenito	Metarenito	Metarenito	Metarenito	Metarenito	Metarenito	Metarenito	Metarenito	Metarenito	Metarenito	Ortognaisse bandado	Granulito ácido	Granulito intermediário	Granito-gnaisse	Granito-gnaisse	Anfibolito	Silexito	Metagabro porfirítico	Granodiorito porfirítico
Unidade		APg3	APg3	APg3	APg3	MNp	MNp	MNp	MNp	MNp	MNp	MNp	MNp	MNp	MNp	APg3	APgl	APgl	APg1	APg1	APg1	APg1	APg1	APg1
Amostra		GeSe 035	GeSe 036	GeSe 037-A	GeSe 037-B	GeSe 038	GeSe 039	GeSe 040	GeSe 041	GeSe 042	GeSe 043	GeSe 044	GeSe 045	GeSe 046	GeSe 047	GeSe 048	GeSe 049	GeSe 050	GeSe 051	GeSe 052	GeSe 053-A	GeSe 053-B	GeSe 054	GeSe 055

n WGS 84	Y	1 8735284	4 8734591	5 8734057	3 8733410	0 8735239	2 8735021	0 8735356	9 8735600	9 8737271	6 8737336	2 8737777	9 8737082	9 8737082	9 8737082	9 8737082	3 8735593	8 8738147	3 8739058	2 8739484	5 8741681	5 8742555	4 8744251	7 8749975
Datu	X	62966	62855^{2}	62818	62774:	62674	62557	62606	62693	62679	62576	623575	621480	621480	621480	621480	62005;	620578	619323	617575	61591	61352	61236^{2}	63054
Localização		Lajedo do Serrote	Cristiápolis	Cristiápolis	Cristiápolis	Cristiápolis, Cascavel	Cristiápolis, Cascavel	Cristiápolis, Cascavel	Cristiápolis, Cascavel	Tanque Grande	Cristianápolis	Tomar do Geru	SW Tomar do Geru	SW Tomar do Geru	SW Tomar do Geru	SW Tomar do Geru	SW Tomar do Geru	SW Tomar do Geru	SW Tomar do Geru	SW Tomar do Geru	SW Tomar do Geru	SW Tomar do Geru	SW Tomar do Geru	NW Tomar do Gerii
Litologia		Ortognaisse bandado migmatítico	Granito lineado	Granito lineado	Granito lineado	Ortognaisse bandado migmatítico	Granada-biotita-gnaisse	Ortognaisse bandado migmatítico	Ortognaisse com foliação difusa	Ortognaisse migmatítico	Ortognaisse	Metarenito	Metarenito de granulação fina	Metarenito de granulação média	Metarenito conglomerático	Metassiltito+filito	Metaconglomerado	Metarenito	Metarenito	Metarenito	Metarenito muito fino	Metarenito	Metarenito	Ortoonaisse handado miomatítico
Unidade		APg1	APg1	APg1	APg1	APg1	APg1	APg1	APg1	APg1	APg1	MNp	MNp	MNp	MNp	MNp	INNI	MNp	MNp	MNp	MNp	MNp	MNp	APe4
Amostra		GeSe 056	GeSe 057	GeSe 058	GeSe 059	GeSe 060	GeSe 061	GeSe 062	GeSe 063	GeSe 064	GeSe 065	GeSe 066	GeSe 067-A	GeSe 067-B	GeSe 067-C	GeSe 067-D	GeSe 068	GeSe 069	GeSe 070	GeSe 071	GeSe 072	GeSe 073	GeSe 074	GeSe 075-A

WGS 84	Υ	8742275	8743354	8744306	8744306	8744306	8741711	8744873	8744364	8743367	8742504	8742504	8741185	8741185	8740059	8739912	8739422	8738362	8746948	8753207	8753372	8753134	8753795	8756314
Datum ⁻	Х	630547	631083	632569	633646	633646	633288	634983	635200	635054	634765	634765	636210	636210	637231	639082	639686	640469	643348	638455	637720	636173	635070	638491
Localização		NW Tomar do Geru	NW Tomar do Geru	NW Tomar do Geru	NW Tomar do Geru	NW Tomar do Geru	NW Tomar do Geru	NE Tomar do Geru	NE Tomar do Geru	NE Tomar do Geru	NE Tomar do Geru	NE Tomar do Geru	NE Tomar do Geru	NE Tomar do Geru	E Tomar do Geru	E Tomar do Geru	E Tomar do Geru	E Tomar do Geru	NW de Umbaúba	NE de Itabaianinha	NE de Itabaianinha	NE de Itabaianinha	NE de Itabaianinha	NE de Itabaianinha
Litologia		Ortognaisse bandado migmatítico	Ortognaisse migmatítico	Ortognaisse com foliação difusa	Augen gnaisse	Gnaisse bandado migmatítico	Augen gnaisse	Granulito intermediário	Granulito intermediário	Granulito intermediário	Granulito ácido	Granulito básico	Ortognaisse de coloração clara	Ortognaisse de coloração clara	Granulito intermediário	Granulito básico	Granulito ácido	Granulito intermediário	Granulito ácido	Ortognaisse	Augen gnaisse	Granito-gnaisse	Ortognaisse migmatítico	Granulito ácido
Unidade		APg4	APg4	APg1	APg1	APg1	APg1	APgl	APgl	APgl	APgl	APgl	APgl	APgl	APgl	APgl	APgl	APgl	APgl	APgl	APgl	APg1	APg1	APgl
Amostra		GeSe 075-B	GeSe 076	GeSe 077	GeSe 078-A	GeSe 078-B	GeSe 079	GeSe 080	GeSe 081	GeSe 082	GeSe 083-A	GeSe 083-B	GeSe 084-A	GeSe 084-B	GeSe 085	GeSe 086	GeSe 087	GeSe 088	GeSe 089	GeSe 090	GeSe 091	GeSe 092	GeSe 093	GeSe 094-A

ocalızaç	Localizaç	Litologia Localizaç
d d	NE	Granulito ácido NE
Еq	N	Granulito ácido N
NE d		Granulito ácido
NE d		Gnaisse
NE d		Granulito ácido
NE d		Dique de diabásio
NE d		Granulito intermediário
NE d		Granulito ácido
NE d		Granulito intermediário
N de	0	Ortognaisse migmatítico
N de		Granito
NW d		Granito
NW d		Ortognaisse migmatítico
NW d		Anfibolito
NW d		Dique de diabásio
Riachã	SW	Metarenito SW
Riachã	SW	Filito SW
Riachã	SW	Granito SW
Riachã	SW	Metarenito SW
Riachã	SW	Dique de andesito SW
Riachã	SW	Ortognaisse SW
o do D	NW Riachã	Metacalcário NW Riachã
io do D	NW Riachâ	Metaconglomerado NW Riachâ

WGS 84	Υ	8781597	8757603	8759002	8760124	8761235	8765813	8766968	8769161	8771081	8759932	8761722	8761962	8764200	8764200	8764756	8764756	8764835	8764835	8764835	8766732	8768161	8770865	8777809
Datum	X	632182	634261	633942	633630	633716	633194	633071	632724	632494	635559	637295	638460	637750	637750	639214	639214	639954	640595	640595	641995	641799	640784	639404
Localização		NW Riachão do Dantas, estrada para Colégio	N de Itabaianinha	N de Itabaianinha	N de Itabaianinha	N de Itabaianinha	N de Itabaianinha	N de Itabaianinha	N de Itabaianinha	N de Itabaianinha	NE Itabaianinha, estrada para Pedrinhas	NW de Pedrinhas, SE-XXX	NW de Pedrinhas, SE-XXX	NW de Pedrinhas, SE-XXX	N de Riachão do Dantas, SE-XXX									
Litologia		Metarenito	Ortognaisse	Ortognaisse bandado migmatítico	Granito-gnaisse	Granito	Augen gnaisse	Granito lineado	Granito	Granito	Granito	Gnaisse quartzo-feldspático	Quartzito	Dique aplítico	Ortognaisse	Granulito	Hornblenda- Granulito	Granulito	Dique gabróico	Gnaisse	Granulito	Granulito	Granulito	Dique básico
Unidade		MNp	APg1	APg1	APg1	APg1	APg4	APg4	APg1	APg1	APg1	APg	Qt	Da	APg1	APgl	APgl	APgl	Da	APgl	APgl	APgl	APgl	APg1
Amostra		GeSe 114	GeSe 115	GeSe 116	GeSe 117	GeSe 118	GeSe 119	GeSe 120	GeSe 121	GeSe 122	GeSe 123	GeSe 124	GeSe 125	GeSe 126-A	GeSe 126-B	GeSe 127-A	GeSe 127-B	GeSe 128	GeSe 129-A	GeSe 129-B	GeSe 130	GeSe 131	GeSe 132	GeSe 133

WGS 84	Υ	8778895	8783498	8754784	8754784	8754891	8754891	8752073	8754731	8754457	8756620	8756269	8761061	8762534	8767018	8767248	8768012	8771972	8771972	8771972	8773361	8764858	8765982	8751640
Datum	Х	639193	639858	657087	657087	658694	658694	668607	665270	662134	661136	661350	660073	659958	656770	657487	658617	653866	653866	653866	654945	678672	678982	675545
Localização		N de Riachão do Dantas, SE-XXX	N de Riachão do Dantas, SE-XXX	E de Arauá, estrada para BR-101	BR-101, junto a Estância	WNW de Estância, margem Rio Piaui	WNW de Estância, Fazenda Oriente	WNW de Estância, Fazenda Barros	WNW de Estância, Fazenda Barros	NW de Estância, na estrada para Boquim	NW de Estância, Fazenda Bom Gosto	E de Boquim, região do Cachimbo	E de Boquim, região do Cachimbo	E de Boquim, região do Cachimbo	NE de Boquim, estrada asfaltada (SE-160) para Salgado	NE de Boquim, estrada asfaltada (SE-160) para Salgado	NE de Boquim, estrada asfaltada (SE-160) para Salgado	NE de Boquim, estrada asfaltada (SE-160) para Salgado	NE de Estância, Riacho Fundo 3	NE de Estância, local denominado Pedreira	NE de Estância, local denominado Pedreira			
Litologia		Gnaisse	Metarenito	Granulito básico	Granulito ácido	Granulito básico	Granulito básico	Metarenito	Granulito ácido	Granito (+ recente)	Sienito	Granulito intermediário e granada	Granulito ácido	Granulito básico	Gnaisse quartzo-feldspático	Granulito intermediário	Granulito ácido	Granulito básico	Granulito ácido	Granulito ácido	Granulito básico	Metarenito	Metarenito	Metarenito
Unidade		APg1	INNI	APgl	APgl	APgl	APgl	INNI	APgl	APgl	APgl	APgl	APgl	APgl	APgl	APgl	APgl	APgl	APgl	APgl	APgl	INNI	MNI	INNI
Amostra		GeSe 134	GeSe 135	GeSe 136-A	GeSe 136-B	GeSe 137-A	GeSe 137-B	GeSe 138	GeSe 139	GeSe 140	GeSe 141	GeSe 142	GeSe 143	GeSe 144	GeSe 145	GeSe 146	GeSe 147	GeSe 148-A	GeSe 148-B	GeSe 148-C	GeSe 149	GeSe 150	GeSe 151	GeSe 152

WGS 84	Y	8772251	8777844	8777257	8774893	8793711	8790628	8784908	8786813	8786813	8789490	8790898	8783635	8782585	8785774	8786454	8786454	8787052	8787052	8787170	8787007	8785837	8784547	8784357
Datum	X	680834	684236	684313	685974	648454	669564	683884	640430	640430	641727	654471	663061	664097	655495	653658	653658	652448	652448	651916	647079	646851	647512	647065
Localização		NE de Estância, Acampamento Rosa de Luxemburgo	SE de Itaporanga d'Ajuda	SE de Itaporanga d'Ajuda	SE de Itaporanga d'Ajuda	NE de Lagarto	ENE de Lagarto	Pedreira MM, a NW de Itaporanga d'Ajuda	Pedreira Serra Azul, estrada Riachão do Dantas-Lagarto	Pedreira Serra Azul, estrada Riachão do Dantas-Lagarto	Margem da estrada Riachão do Dantas-Lagarto	ENE de Lagarto, Povoado de Caraíbas	NW de Salgado, São Bento de Cima e de Baixo	NW de Salgado, entre São Bento de Baixo e Posto Fiscal	NW de Salgado, estrada para Lagarto (SE-270)	Faz. Cuí, estrada Salgado-Lagarto (SE-270)	Faz. Cuí, estrada Salgado-Lagarto (SE-270)	SE de Lagarto, estrada para Salgado (SE-270)	SE de Lagarto, estrada para Salgado (SE-270)	SE de Lagarto, estrada para Salgado (SE-270)	SSE de Lagarto, Povoado de Cocão a partir da SE-270	SSE de Lagarto, próximo ao Rio Piauí	SSE de Lagarto, Faz. Brejinho (do Prefeito)	SSE de Lagarto, na Faz. Brejinho (do Prefeito)
Litologia		Quatzito	Quatzito conglomerático	Quatzito	Quatzito	Metarenito	Metassiltito	Metarenito	Metarenito verde	Metarenito lilás	Metarenito	Metarenito	Quatzito	Granulito básico	Granulito básico	Granulito intermediário	Granulito básico	Granulito ácido	Granulito básico	Metarenito	Metarenito	Filito	Metacalcário	Granulito básico
Unidade		INNI	INNI	INNI	MNI	MNI	INNI	INNI	INNI	INNI	MNI	INNI	INNI	APgl	APgl	APgl	APgl	APgl	APgl	INNI	INNI	INNI	MNa	APgl
Amostra		GeSe 153	GeSe 154	GeSe 155	GeSe 156	GeSe 157	GeSe 158	GeSe 159	GeSe $160-A$	GeSe $160-B$	GeSe 161	GeSe 162	GeSe 163	GeSe 164	GeSe 165	GeSe $166-A$	GeSe $166-B$	GeSe 167-A	GeSe 167-B	GeSe 168	GeSe 169	GeSe 170	GeSe 171	GeSe 172

Unid	lade	Litologia	Localização	Datum	WGS 84
				X	Υ
		Metacalcário	SSE de Lagarto, Faz. Brejinho (do Prefeito)	647080	8784416
	a a	Metacalcário	S de Lagarto, entre os povoados de Cajazeira e Curralinho	644052	8783960
-	<u>[]</u>	Granito-gnaisse	S de Lagarto, entre os povoados de Cajazeira e Curralinho	643066	8783867
	gl	Granito	S de Lagarto, entre os povoados de Cajazeira e Curralinho	643066	8783867
	gl	Granulito básico	NE de Riachão do Dantas, Fazenda Areias	641531	8776398
\sim)t	Quartzito	NE de Riachão do Dantas, Fazenda Areias	641623	8776622
	² gl	Hornblenda-gnaisse	NE de Riachão do Dantas, Fazenda Areias	642902	8777920
IЦ	² gl	Granulito intermediário	SE de Riachão do Dantas, Fazenda Maxixe	640858	8774290
Ъ	⁵ gl	Granulito básico	SE de Riachão do Dantas, na estrada para a Fazenda Maxixe	642033	8774079
L D I	² gl	Granulito intermediário	E de Riachão do Dantas, Fazenda Maxixe	644487	8775268
Ъ.	^o gl	Granulito básico	E de Riachão do Dantas, Fazenda Maxixe	644487	8775268
L L	² gl	Granulito básico	E de Riachão do Dantas, Fazenda Maxixe	646145	8776216
L L	² gl	Granulito intermediário	NE de Riachão do Dantas, entre as fazendas Maxixe e Piauí	650806	8779872
L D L	² gl	Granulito ácido	NE de Riachão do Dantas, Fazenda Piauí-Povoado dos Treze	653337	8780430
$ \Xi $	N	Metarenito	NW de Lagarto, na estrada para Simão Dias (SE-270)	641672	8796813
\Box	N	Metargilito	NW de Lagarto, pedreira na estrada para Simão Dias	640991	8797310
	N	Metarenito muito fino	NW de Lagarto, pedreira na estrada para Simão Dias	640991	8797310
	N	Metarenito fino	NW de Lagarto, pedreira na estrada para Simão Dias	640991	8797310
	Np	Metarenito	NW de Lagarto, na estrada para Simão Dias (SE-270)	640702	8798936
	NI	Metarenito	NW de Lagarto, na estrada para Simão Dias (SE-270)	639651	8800981
	Np	Metarenito	$\rm NW$ de Lagarto, na estrada para Simão Dias (SE-270)	638725	8802673

APÊNDICE B

Teores de K, U e Th, densidade e produção de calor radiogênico das amostras da área de estudo

Amostra		Teores		Densidade	Calor radiogênico
	K(%)	U(ppm)	Th(ppm)	$(x10^3 \text{ kg}m^{-3})$	(μWm^{-3})
GeSe 001	2,14	2,19	10,80	2,603	1,456
GeSe 002	4,07	0,92	$15,\!26$	2,612	1,619
GeSe 003	2,97	0,35	1,04	2,658	0,434
GeSe 004	4,35	5,18	$35,\!35$	2,661	4,122
GeSe 005	4,10	8,29	29,54	2,676	4,518
GeSe $006-A$	0,95	0,56	4,14	2,674	0,514
GeSe $006-B$	3,37	3,35	32,88	2,892	3,696
GeSe $007-A$	4,74	6,18	88,93	2,610	7,909
GeSe $007-B$	nd	nd	nd	2,651	nd
GeSe 008-A	1,54	0,51	1,38	2,790	0,384
GeSe $008-B$	1,97	0,41	0,88	2,706	0,352
GeSe 009	0,78	nd	1,09	2,734	0,150
GeSe 010	3,57	2,00	30,33	2,663	2,905
GeSe 011	3,73	6,53	13,92	2,619	2,901
GeSe 012-A	3,67	1,91	11,98	2,617	1,839
GeSe 012 -B	3,47	1,91	11,98	2,607	1,588
GeSe 013-A	nd	nd	nd	2,586	nd
GeSe $013-B$	2,01	3,28	10,38	2,670	1,730
GeSe 014	2,63	1,53	8,67	2,647	1,215
GeSe 015	2,40	4,34	13,42	2,680	2,252
GeSe 016	2,53	2,36	$11,\!25$	2,601	1,562
GeSe 017	1,90	1,54	8,74	2,614	1,141
GeSe 018	$2,\!67$	3,68	$12,\!65$	2,732	2,095
GeSe 019	2,30	3,00	$10,\!85$	2,699	1,737
GeSe 020	2,60	2,88	12,18	2,668	1,805
GeSe 021	2,66	3,23	$11,\!95$	2,691	1,900
GeSe 022	2,21	1,81	7,73	2,654	1,187
GeSe 023	nd	nd	nd	2,546	nd
GeSe 024	nd	nd	nd	nd	nd
GeSe 025	nd	nd	nd	nd	nd
GeSe $026-A$	4,39	3,39	29,48	2,605	3,204
GeSe $026-B$	nd	nd	nd	2,607	nd
GeSe 027	1,90	2,49	9,30	2,569	1,390
GeSe 028	0,79	2,44	17,80	2,588	1,852
GeSe 029-A	nd	nd	nd	2,569	nd

Amostra	Teores			Densidade	Calor Radiogênico
	K(%)	U(ppm)	Th(ppm)	$(x10^3 \text{ kg}m^{-3})$	(μWm^{-3})
GeSe 029-B	nd	nd	nd	2,686	nd
GeSe 030	0,01	0,48	0,61	2,506	0,154
GeSe 031-A	4,01	2,26	15,21	2,615	1,966
GeSe 031-B	nd	nd	nd	2,539	nd
GeSe 031-C	nd	nd	nd	2,692	nd
GeSe 031-D	nd	nd	nd	2,695	nd
GeSe 032-A	1,91	2,55	9,97	2,644	1,792
GeSe 032 -B	3,07	3,07	6,15	2,656	1,478
GeSe 033-A	nd	nd	nd	2,624	nd
GeSe 033-B	3,49	8,08	26,75	2,598	4,093
GeSe 034-A	3,86	42,55	65,37	2,615	15,320
GeSe 034-B	2,31	2,98	12,82	2,637	1,826
GeSe 035	2,50	2,96	7,03	2,626	1,441
GeSe 036	3,59	1,21	10,32	2,628	1,325
GeSe 037-A	4,63	9,38	93,24	2,601	8,951
GeSe 037-B	4,33	5,57	78,43	2,614	7,029
GeSe 038	2,32	2,53	11,06	2,598	1,571
GeSe 039	1,81	2,01	7,85	2,613	1,190
GeSe 040	1,95	1,50	6,88	2,659	1,029
GeSe 041	1,92	2,99	10,31	2,686	1,653
GeSe 042	1,95	2,20	9,55	2,648	1,382
GeSe 043	3,38	3,49	13,17	2,607	2,052
GeSe 044	2,30	3,43	10,15	2,668	1,778
GeSe 045	2,06	1,92	10,05	2,629	1,345
GeSe 046	2,35	1,85	9,54	2,561	1,286
GeSe 047	2,39	1,74	8,99	2,628	1,259
GeSe 048	2,92	2,97	24,21	2,619	2,630
GeSe 049	4,46	9,08	68,38	2,616	7,248
GeSe 050	nd	nd	nd	2,650	nd
GeSe 051	1,77	1,07	6,99	2,703	0,926
GeSe 052	3,51	3,41	20,01	2,634	2,526
GeSe 053-A	0,17	0,18	0,71	2,726	0,112
GeSe $053-B$	nd	nd	nd	2,922	nd
GeSe 054	0,19	0,18	0,72	3,010	0,127
GeSe 055	2,65	3,29	12,45	2,676	1,938
GeSe 056	1,46	1,08	13,07	2,651	1,294

Amostra	Teores			Densidade	Calor Radiogênico
	K(%)	U(ppm)	Th(ppm)	$(x10^3 \text{ kg}m^{-3})$	(μWm^{-3})
GeSe 057	3,55	3,69	20,12	2,642	2,615
GeSe 058	3,14	2,92	18,07	2,615	2,222
GeSe 059	3,47	2,43	19,52	2,639	2,248
GeSe 060	nd	nd	nd	2,654	nd
GeSe 061	1,99	3,63	12,82	2,785	2,069
GeSe 062	1,42	0,95	8,34	2,664	0,941
GeSe 063	1,46	0,89	5,40	2,664	0,729
GeSe 064	1,98	2,97	3,88	2,676	1,207
GeSe 065	2,75	4,07	13,97	2,683	2,256
GeSe 066	2,18	2,93	13,07	2,698	1,860
GeSe 067-A	1,96	2,35	9,02	2,700	1,412
GeSe $067-B$	2,33	2,31	8,66	2,675	1,398
GeSe 067-C	2,02	2,17	9,59	2,692	1,406
GeSe 067-D	2,97	2,47	11,67	2,747	1,751
GeSe 068	0,23	0,97	1,40	2,689	0,366
GeSe 069	1,89	1,78	6,24	2,690	1,062
GeSe 070	1,61	1,20	4,73	2,688	0,783
GeSe 071	1,84	1,16	4,32	2,653	0,756
GeSe 072	2,90	3,32	11,29	2,728	1,926
GeSe 073	1,89	1,08	5,51	2,670	0,827
GeSe 074	1,81	1,76	9,07	2,693	1,246
GeSe 075-A	2,40	1,19	5,75	2,661	0,915
GeSe $075-B$	nd	nd	nd	2,615	nd
GeSe 076	nd	nd	nd	2,676	nd
GeSe 077	3,92	2,71	25,94	2,627	2,781
GeSe 078-A	1,42	2,71	25,78	2,699	2,611
GeSe $078-B$	2,92	2,49	10,50	2,731	1,659
GeSe 079	N	N	Ν	2,705	N
GeSe 080	2,85	3,87	24,22	2,647	2,879
GeSe 081	nd	nd	nd	2,702	nd
GeSe 082	1,65	1,40	7,10	2,717	1,02
GeSe 083-A	2,38	3,28	17,88	2,748	2,344
GeSe 083-B	1,74	1,49	10,10	2,610	1,203
GeSe 084-A	nd	nd	nd	2,706	nd
GeSe 084-B	1,14	1,29	6,20	2,767	0,889

Amostra	Teores			Densidade	Calor Radiogênico
	K(%)	U(ppm)	Th(ppm)	$(x10^3 \text{ kg}m^{-3})$	(μWm^{-3})
GeSe 085	0,11	$0,\!15$	$0,\!57$	2,783	0,091
GeSe 086	$0,\!89$	$0,\!85$	$3,\!19$	$3,\!085$	$0,\!597$
GeSe 087	nd	nd	nd	2,713	nd
GeSe 088	1,07	5,32	$30,\!15$	2,882	3,791
GeSe 089	3,91	$0,\!55$	1,56	2,773	0,633
GeSe 090	$1,\!19$	1,50	$12,\!99$	2,700	1,395
GeSe 091-A	2,06	5,27	$36,\!15$	2,704	4,053
GeSe $091-B$	3,70	6,77	26,41	2,711	3,929
GeSe 092	3,96	1,48	10,24	2,683	1,451
GeSe 093	3,01	3,81	21,77	$2,\!659$	2,725
GeSe 094-A	1,16	0,54	1,83	2,729	0,378
GeSe $094-B$	0,64	0,31	0,56	2,708	0,179
GeSe 095	4,34	1,98	33,08	2,655	3,150
GeSe 096	3,70	0,34	6,61	2,681	0,886
GeSe 097	4,64	0,50	12,06	2,642	1,368
GeSe 098	3,91	1,36	5,53	2,707	1,102
GeSe 099	2,84	2,12	11,75	2,789	1,677
GeSe 100	4,24	1,00	4,54	2,694	0,967
GeSe 101	3,76	2,66	12,72	2,744	1,947
GeSe 102	2,06	0,32	2,01	2,842	0,437
GeSe 103	3,59	4,58	$15,\!17$	2,661	2,526
GeSe 104	1,86	9,48	9,23	2,700	3,249
GeSe $105-A$	4,26	4,00	$38,\!57$	2,643	4,008
GeSe $105-B$	1,99	1,56	9,41	2,671	1,225
GeSe 106	1,03	0,54	2,64	2,961	0,458
GeSe 107	2,08	1,82	3,59	2,919	0,985
GeSe 108-A	3,17	2,30	14,84	2,669	1,893
GeSe 108-B	3,01	3,96	21,11	2,680	2,739
GeSe 109-A	3,75	4,99	50,62	2,631	5,002
GeSe $109-B$	1,56	1,24	8,15	2,670	1,017
GeSe 110	4,62	6,08	54,86	2,660	5,704
GeSe 111	0,40	0,17	0,56	2,741	0,122
GeSe 112-A	nd	0,33	0,60	2,805	0,131
GeSe 112-B	nd	0,22	0,51	2,793	0,095
GeSe 113	nd	nd	nd	nd	nd
GeSe 114	1,95	2,36	8,18	2,702	1,356
GeSe 115	3,81	5,72	26,553	2,629	3,567

Amostra	Teores			Densidade	Calor Radiogênico
	K(%)	U(ppm)	Th(ppm)	$(x10^3 \text{ kg}m^{-3})$	(μWm^{-3})
GeSe 116	2,21	2,14	10,82	2,690	1,500
GeSe 117	3,68	3,47	13,20	$2,\!627$	2,092
GeSe 118	nd	nd	nd	2,636	nd
GeSe 119	3,90	3,66	26,31	2,639	3,055
GeSe 120	nd	nd	nd	2,638	nd
GeSe 121	3,72	6,08	$18,\!62$	$2,\!634$	3,121
GeSe 122	nd	nd	nd	$2,\!627$	nd
GeSe 123	nd	nd	nd	$2,\!657$	nd
GeSe 124	0,86	1,27	$6,\!63$	$2,\!650$	$0,\!849$
GeSe 125	0,24	0,90	5,74	$2,\!645$	$0,\!637$
GeSe 126-A	3,31	8,51	$16,\!61$	$2,\!658$	$3,\!590$
GeSe $126-B$	3,88	7,18	$24,\!34$	$2,\!647$	3,816
GeSe 127-A	0,70	$0,\!45$	2,73	2,745	$0,\!376$
GeSe $127-B$	$0,\!68$	1,62	$3,\!05$	2,754	0,705
GeSe 128	0,75	0,63	0,75	$2,\!839$	0,299
GeSe 129-A	1,88	0,63	4,75	2,829	0,699
GeSe 129-B	$1,\!16$	0,34	0,73	2,723	0,249
GeSe 130	0,94	0,54	1,06	2,733	0,304
GeSe 131	$1,\!14$	0,28	1,82	2,714	0,306
GeSe 132	0,94	$0,\!59$	1,74	2,760	0,368
GeSe 133	3,77	0,75	5,03	2,793	0,925
GeSe 134	2,21	$0,\!35$	2,42	$2,\!659$	$0,\!458$
GeSe 135	$2,\!54$	2,99	$14,\!07$	2,732	2,003
GeSe 136-A	$4,\!07$	1,34	$13,\!51$	$2,\!691$	$1,\!655$
GeSe 136-B	$1,\!29$	$2,\!58$	$13,\!94$	$2,\!987$	1,934
GeSe 137-A	0,06	$0,\!37$	1,26	3,062	0,213
GeSe 137-B	3,41	0,76	15,78	2,883	1,715
GeSe 138	$2,\!43$	1,70	8,72	2,616	1,299
GeSe 139	0,72	$0,\!58$	4,16	2,772	0,518
GeSe 140	$3,\!78$	4,11	99,72	2,767	8,510
GeSe 141	$4,\!37$	$3,\!18$	$57,\!66$	2,708	5,228
GeSe 142	$3,\!50$	1,78	43,33	2,727	3,820
GeSe 143	2,42	0,59	54,58	2,736	0,705
GeSe 144	2,04	0,12	$0,\!69$	2,826	0,283
GeSe 145	4,05	0,23	1,33	2,606	0,513

Amostra	Teores			Densidade	Calor Radiogênico				
	K(%)	U(ppm)	Th(ppm)	$(x10^3 \text{ kg}m^{-3})$	(μWm^{-3})				
GeSe 146	1,90	0,51	32,83	2,644	2,526				
GeSe 147	2,00	0,66	6,09	2,853	0,823				
GeSe 148-A	nd	nd	nd	nd	nd				
GeSe 148-B	0,89	0,23	1,33	2,988	0,260				
GeSe 148-C	nd	nd	nd	nd	nd				
GeSe 149	2,41	1,23	18,91	2,668	1,828				
GeSe 150	2,52	3,27	7,93	2,612	1,572				
GeSe 151	2,16	2,96	8,83	2,645	1,542				
GeSe 152	2,79	2,09	9,76	2,624	1,433				
GeSe 153	0,06	2,49	4,96	2,626	0,961				
GeSe 154	nd	0,80	0,80	2,563	0,248				
GeSe 155	0,03	1,09	1,42	$2,\!576$	0,364				
GeSe 156	nd	1,08	2,08	2,564	0,400				
GeSe 157	2,53	4,93	16,66	2,723	2,679				
GeSe 158	2,75	3,17	12,85	$2,\!590$	1,882				
GeSe 159	2,55	3,70	12,51	2,644	2,013				
GeSe 160-A	2,51	3,37	14,02	2,685	2,059				
GeSe $160-B$	0,75	1,46	5,71	2,678	0,834				
GeSe 161	2,48	3,98	14,82	2,609	2,204				
GeSe 162	nd	nd	nd	2,645	nd				
GeSe 163	0,01	0,19	0,63	2,555	0,088				
GeSe 164	0,59	0,09	0,85	2,713	0,138				
GeSe 165	0,95	nd	0,77	2,733	0,144				
GeSe 166-A	1,73	0,94	$3,\!57$	2,827	0,682				
GeSe $166-B$	$0,\!65$	0,04	1,22	2,740	0,158				
GeSe 167-A	2,83	2,22	$19,\!66$	$2,\!653$	2,158				
GeSe $167-B$	3,29	0,94	$3,\!57$	$2,\!887$	0,853				
GeSe 168	1,71	2,81	17,20	2,545	1,953				
GeSe 169	1,49	1,20	8,77	2,630	1,027				
GeSe 170	3,35	2,17	13,22	2,618	1,804				
GeSe 171	0,16	0,67	0,81	2,818	0,254				
GeSe 172	$1,\!13$	$0,\!35$	1,02	2,941	0,290				
GeSe 173	0,04	0,43	$0,\!67$	2,839	0,169				
GeSe 174	0,02	0,13	0,50	2,726	0,071				
GeSe 175-A	1,05	0,10	0,84	2,720	0,184				
Amostra		Teores		Densidade	Calor Radiogênico				
--------------	------	--------	-----------	----------------------------	-------------------	--	--	--	--
	K(%)	U(ppm)	Th(ppm)	$(x10^3 \text{ kg}m^{-3})$	(μWm^{-3})				
GeSe $175-B$	2,84	1,08	$16{,}53$	2,779	1,736				
GeSe 176	1,00	0,33	0,82	2,696	0,235				
GeSe 177	0,21	0,29	0,98	2,634	0,158				
GeSe 178	4,88	0,32	3,12	2,640	0,740				
GeSe 179	nd	nd	nd	2,709	nd				
GeSe 180	1,24	0,54	1,34	2,700	0,348				
GeSe 181-A	1,33	0,16	1,48	2,654	0,264				
GeSe 181-B	0,08	0,14	0,42	3,003	0,081				
GeSe 182	0,12	0,03	0,63	2,964	0,069				
GeSe 183	0,48	0,16	0,79	2,775	0,145				
GeSe 184	3,88	1,58	$22,\!45$	2,617	2,251				
GeSe 185	2,42	2,88	14,03	2,664	1,911				
GeSe 186-A	nd	nd	nd	$2,\!682$	nd				
GeSe 186-B	nd	nd	nd	2,708	nd				
GeSe 186-C	nd	nd	nd	2,711	nd				
GeSe 187	1,55	1,91	8,61	2,565	1,170				
GeSe 188	nd	nd	nd	2,751	nd				
GeSe 189	2,34	4,84	21,36	2,686	2,925				

APÊNDICE C

Teores de K, U e Th, condutividade térmica, difusividade térmica e calor específico das amostras da área de estudo

Calor específico	$(\mathbf{x}10^3 \mathbf{J} k g^{-1} K^{-1})$	nd	0,348	nd	nd	0,604	0,709	nd	0,534	0,585	nd	0,656	0,594	0,721	0,576	0,539	0,627	0,598	nd	$0,\!430$	nd	nd	0,530
Difusividade térmica	$(\mathbf{x} \ 10^{-6} m^2 s^{-1})$	nd	1,49	nd	nd	2,01	1,53	nd	1,90	1,73	nd	1,65	1,82	1,58	2,05	1,84	2,07	1,96	nd	1,96	nd	nd	1,84
Condutividade térmica	$(\mathrm{W}m^{-1}K^{-1})$	nd	1,56	nd	nd	3,16	2,87	0,35	2,68	2,71	nd	2,92	2,91	3,07	3,17	2,35	3,54	3,16	nd	2,29	nd	nd	2,58
Calor radiogênico	(μWm^{-3})	7,248	0,127	1,938	2,615	2,222	2,248	0,941	1,207	2,256	1,860	1,412	1,406	0,366	1,062	0,756	1,926	1,246	2,781	2,611	2,879	1,203	2,725
	Th(ppm)	68, 38	0,72	12,45	20,12	18,07	19,52	8,34	3,88	13,97	13,07	9,02	9,59	1,40	6,24	4,32	11,29	9,07	25,94	25,78	24, 22	10,10	321, 77
Teores	U(ppm)	9,08	0,18	3,29	3,69	2,92	2,43	0,95	2,97	4,07	2,93	2,35	2,17	0,97	1,78	1,16	3, 32	1,76	2,71	2,71	3,87	1,49	3,81
	K(%)	4,46	0, 19	2,65	3,55	3,14	3,47	1,42	1,98	2,75	2,18	1,96	2,02	0,23	1,89	1,84	2,90	1,81	3,92	1,42	2,85	1,74	3,01
Amostra		GeSe 049	GeSe 054	GeSe 055	GeSe 057	GeSe 058	GeSe 059	GeSe 062	GeSe 064	GeSe 065	GeSe 066	GeSe 067-A	GeSe 067-C	GeSe 068	GeSe 069	GeSe 071	GeSe 072	GeSe 074	GeSe 077	GeSe 078-A	GeSe 080	GeSe 083-B	GeSe 093

Calor específico	$(\mathbf{x}10^3 \mathbf{J} k g^{-1} K^{-1})$	0,536	0,523	0,536	0,261	nd	0,615	0,387	0,481	0,458	0,575	0,562	nd	0,439	0,557	0,395	0,475	0,650	1,100	1,085	1,180	nd	nd
Difusividade térmica	$(x \ 10^{-6} m^2 s^{-1})$	1,82	1,99	1,71	1,27	nd	1,7	1,37	1,58	1,96	2,08	2,02	nd	1,81	2,07	1.76	1,7	1,79	2,03	1,66	nd	nd	nd
Condutividade térmica	$(Wm^{-1}K^{-1})$	2,65	2,89	2,52	2,36	nd	2,79	2,02	2,08	2,5	3,28	2,98	nd	2,16	3,15	2,06	2,12	3,08	5,86	4,63	nd	nd	nd
Calor radiogênico	(μWm^{-3})	1,102	1,677	1,947	1,893	0,131	0,849	3,816	0,376	0,925	2,003	1,299	0,518	5,228	3,820	0,260	1,572	1,542	0,961	0,248	0,364	2,679	1,882
	Th(ppm)	5,53	11,75	12,72	14,84	0,60	6,63	24, 34	2,73	5,03	14,07	8,72	4,16	57,66	43,33	1,33	7,93	8,83	4,96	0,80	$1,\!42$	16,66	12,85
Teores	U(ppm)	1,36	2,12	2,66	2,30	0,33	1,27	7,18	0,45	0,75	2,99	1,70	0,58	3,18	1,78	0,23	3, 27	2,96	2,49	0,80	1,09	4,93	3,17
	K(%)	3,91	2,84	3,76	3,17	nd3	0,86	3,88	0,70	3,77	2,54	2,43	0,72	4,37	3,50	0,89	2,52	2,16	0,06	nd	0,03	2,53	2,75
Amostra	-	GeSe 098	GeSe 099	GeSe 101	GeSe $108-A$	GeSe 112-A	GeSe 124	GeSe $126-B$	GeSe 127-A	GeSe 133	GeSe 135	GeSe 138	GeSe 139	GeSe 141	GeSe 142	GeSe 148-B	GeSe 150	GeSe 151	GeSe 153	GeSe 154	GeSe 155	GeSe 157	GeSe 158

Calor específico	$({\bf x}10^3 {\bf J}kg^{-1}K^{-1})$	nd	nd	0,904	nd	0,457	nd	nd	0,801	0,524	0,462	0,866	0,935	0,457	1,299	0,678	nd	0,485	0,608	0,600	0,603
Difusividade térmica	$(x \ 10^{-6}m^2s^{-1})$	nd	nd	1,80	pu	1,52	nd	nd	1,66	1,74	2,02	1,79	2,06	1,85	1,64	1,84	nd	1,81	1,61	1,97	1,95
Condutividade térmica	$(Wm^{-1}K^{-1})$	nd	nd	4,35	pu	1,9	nd	nd	3,37	2,48	2,76	4,41	5,25	2,33	5,61	3,38	0,99	2,29	2,61	3,04	3,16
Calor radiogênico	(μWm^{-3})	2,013	2,059	0,834	0,138	0,144	2,158	0,853	1,953	1,804	0,290	0,169	0,071	1,736	0,158	0,348	0,264	2,251	1,911	1,170	2,925
	Th(ppm)	12,51	14,02	5,71	0,85	0,77	$19,\!66$	3,57	$17,\!20$	13,22	1,02	0,67	0,50	16,53	0,98	1,34	$1,\!48$	22,45	14,03	8,61	21,36
Teores	U(ppm)	3,70	3,37	1,46	0,09	nd	2,22	0,94	2,81	2,17	0,35	0,43	0,13	1,08	0,29	0,54	0,16	1,58	2,88	1,91	4,84
	K(%)	2,55	2,51	0,75	0,59	0.95	2,83	3,29	1,71	3,35	1,13	0,04	0,02	2,84	0,21	1,24	1,33	3,88	2,42	1,55	2,34
Amostra		GeSe 159	GeSe $160-A$	GeSe 160-B	GeSe 164	GeSe 165	GeSe 167-A	GeSe 167-B	GeSe 168	GeSe 170	GeSe 172	GeSe 173	GeSe 174	GeSe 175-B	GeSe 177	GeSe 180	GeSe 181-A	GeSe 184	GeSe 185	GeSe 187	GeSe 189

Referências Bibliográficas

- Adams, J. A. S. e Gasparine, P. (1970) Gamma-Ray Spectometry of Rocks, Elsevier Company.
- Allard, G. D. e Tibana, P. (1966) Extenção pré-cretácea e petrografia da série estância, reconstituída pelo estudo dos conglomerados cretáceos do recôncavo, Boletim técnico da Petrobras, 9, n.1:17–45.
- Alves Jr., P. B. (2004) Determinação de perfis de taxa de produção de calor radiogênico em poços da bacia do Recôncavo, Trabalho de graduação, monografia, Universidade Federal da Bahia, Salvador.
- Barbosa, J. S. F. e Dominguez, J. M. L. (1996) Geologia da Bahia: texto explicativo para o mapa geológico ao milionésimo, SICT/SGM, Salvador.
- Branner, J. C. (1913) The estancia beds of bahia, sergipe and alagoas, brazil, American Journal of Science, 4, 210(35):619–631.
- Clauser, C. e Hueges, E. (1995) Thermal conductivity of rocks and minerals, AGU Handbook f Physical constant., **39**:105–126.
- Currie, L. A. (1968) Limites for qualitative detection and quantitative determination. application to radiochemistry, Analytical Chemistry, **40(3)**:586–593.
- D'el-Rey Silva, L. J. H. (1999) Basin infilling in the southern-central part of the sergipano belt (ne brazil) and implications for the evolution of pan-african/brasiliano cratons and neoproterozoic sedimentary cover, Journal of South American Earth Sciences, 12:453– 470.
- Fowler, C. M. R. (1990) The solid earth An introduction to global geophysics, University Press, Cambridge.
- Halliday, D.; Resnick, R. e Krane, K. (1996) Física 2- Livros Técnicos e Científicos, Editora S.A.
- Mottaghy, D.; Schellschmidt, R.; Popov, Y. A.; Clauser, C.; Kukkonen, L. T.; Nover, G.and Milanovsky, S. e Romushkevich, R. A. (2005) New heat data from the immediate vicinity of the Kola super-deep borehole: vertical variation in heat flow confirmed and attributed to advection, Tectonophysics.
- Oliveira, N. B. (2006) Efeitos do gradiente do campo magnético na determinação da porosidade por ressonância magnética nuclear, Tese de doutorado, Universidade Federal da Bahia, Salvador.

- Reys, L. M. G. (2008) Distribuição vertical da taxa volumétrica de produção de calor radiogênico no Cráton do São Fransisco, Tese de doutorado, Universidade Federal da Bahia, Salvador.
- Saes, G. S. e Vilas-Boas, G. S. (1986) Fácies sedimentares e modelo de sedimentação da formação acauã, pré-cambriano superior no nordeste da bahia, Revista Brasileira de Geociências, 16, n.b:294–300.
- Santos, R. A.; Martins, A. A. M.; Neves, J. P. e Leal, R. A. (1998) Geologia e Recursos Minerais do Estado de Sergipe, CPRM/Codise.
- Sapucaia, N. S. (2004) Diferenciação litológica, teores de potássio, urânio, tório e taxa de produção de calor radiogênico no embasamento adjacente às bacias sedimentares de Camamu e Almada, Tese de mestrado, Universidade Federal da Bahia, Salvador.
- Schon, J. H. (1996) Physical properties of rocks, Editora Pergamon.
- Silva Filho, M. A.; Bonfim, L. F. C. e Santos, R. A. (1977) Projeto Baixo São Francisco/ Vaza-Barris: Relatório, vol. XIX, CPRM, Salvador.