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Characteristic polynomial of A and
Faddeev’s method for A~

J.H. Caltenco, J. Lépez-Bonilla, R. Pena-Rivero

Abstract

We explain that, the Leverrier-Takeno’s procedure for to con-
struct the characteristic equation of an arbitrary matrix A leads, via

Cayley-Hamilton theorem, to Faddeev’s algorithm for A~!
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1 Introduction
For any matrix A, x, = (a;'-) its characteristic polynomial:
(1) N4+ NP+ ta, A +a,=0

can be obtained, through several methods [1-5], directly from the condition
det(a§- — A(Sj») = 0. The technique of Leverrier-Takeno [1,6-10], presented
in Sec. 2, is a simple and interesting method for to construct (1) based it
in the traces of the powers A", r = 1,...,n. On the other hand, it is very

known that any matrix satisfies its characteristic equation:

(2) A"+ A+ a1 A+ a,l =0
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which represents the Cayley-Hamilton theorem. If A is nonsingular (det A #

0), then (2) permits to deduce the corresponding inverse matrix:

1
(3) At = —a—(A”‘1 +a A an ),

in this case we have a,, # 0 because a,, = (—1)" det A.

Fadeev [11,12] proposed an algorithm, explained in Sec.3, for to deter-
mine A~! in terms of the A" and their traces. Here we shall exhibit that
(3) coincides with the Faddev’s result if we employ the Leverrier-Takeno’s
expressions for the coefficients a;. In other words, the procedure of Faddeev

is equivalent to Cayley-Hamilton equation.

2 Leverrier-Takeno method
If we define quantities:
(4) apg =1, S, =trA", r=12,...,n

then the technique of Leverrier-Takeno [1,6-10] leads to (1) in where the q;

are determined with the following recurrent formulae:
(5)  ra,+ s1a,-1 + Sear—2+ ...+ Sp_1a1 + 5, = 0, r=12,...,n

therefore

a; = —Sy, 2!@2 = (81)2 — 89, 3!@3 = —(81)3 + 38152 - 253,
dlag = (s1)* — 6(s1)? + 85153 + 3(s2)> — 634, ete.

in particular det A = (—1)"a,, that is the determinant of any square matrix
only depends of the traces s,, thus it is evident than A and its transpose
have the same determinant.

This method based in the relations (4) and has applications in numerical
analysis, but it also is very useful in theoretical work on several topics of

general relativity as the embedding of Riemannian spaces [13-15], algebraic
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studies of the Ricci tensor [16-23], alternative gravitational theories [24], etc.
because there it is necessary to determine the characteristic polynomial of
a second order tensor. Besides, the Leverrier-Takeno procedure finds utility
in the study of the motion of a classical charged particles into a uniform
electromagnetic field [25-29].

3 Faddeev Method

The algorithm proposed by Faddeev [11,12] for to obtain A™! is a sequence
of algebraic operations on the powers A" and their traces, in fact, his method
is given by the following instructions:
(7)

Ay = A, q = trA, By = Ay —qil,

Ay = Bi A, q2 = 5trA,, By = Ay — qol,

1
2

Anfl = anZAv gn—-1 = ﬁtTAnfl anl = Anfl - %171[7

An - Bn—l qn = %trAn
then
1
(8) Ail = —Bn,1

As an example, if we apply (7) tot the case n = 4, then it is easy to see
that the corresponding ¢, reproduce (6) resulting ¢; = —a;, and besides
the expression (8) is identical to (3) from Cayley-Hamilton identity. By
mathematical induction really is immediate to prove that (7) and (8) are
equivalent to (3), (4) and (5), showing thus that the Faddeev technique has

its origin in the Leverrier-Takeno method plus Cayley-Hamilton theorem.
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