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Characteristic polynomial of A and
Faddeev’s method for A

−11

J.H. Caltenco, J. López-Bonilla, R. Peńa-Rivero

Abstract

We explain that, the Leverrier-Takeno’s procedure for to con-

struct the characteristic equation of an arbitrary matrix A leads, via

Cayley-Hamilton theorem, to Faddeev’s algorithm for A
−1
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1 Introduction

For any matrix An×n = (ai
j) its characteristic polynomial:

(1) λn + α1λ
n−1 + . . . + an−1λ + an = 0

can be obtained, through several methods [1-5], directly from the condition

det(ai
j − λδi

j) = 0. The technique of Leverrier-Takeno [1,6-10], presented

in Sec. 2, is a simple and interesting method for to construct (1) based it

in the traces of the powers Ar, r = 1, . . . , n. On the other hand, it is very

known that any matrix satisfies its characteristic equation:

(2) An + a1A
n−1 + . . . + an−1A + anI = 0
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which represents the Cayley-Hamilton theorem. If A is nonsingular (detA 6=

0), then (2) permits to deduce the corresponding inverse matrix:

(3) A−1 = −
1

an

(An−1 + a1A
n−2 + . . . + an−1I),

in this case we have an 6= 0 because an = (−1)N det A.

Fadeev [11,12] proposed an algorithm, explained in Sec.3, for to deter-

mine A−1 in terms of the Ar and their traces. Here we shall exhibit that

(3) coincides with the Faddev’s result if we employ the Leverrier-Takeno’s

expressions for the coefficients aj. In other words, the procedure of Faddeev

is equivalent to Cayley-Hamilton equation.

2 Leverrier-Takeno method

If we define quantities:

(4) a0 = 1, Sr = trAr, r = 1, 2, . . . , n

then the technique of Leverrier-Takeno [1,6-10] leads to (1) in where the ai

are determined with the following recurrent formulae:

(5) rar + s1ar−1 + s2ar−2 + . . . + sr−1a1 + sr = 0, r = 1, 2, . . . , n

therefore

(6)
a1 = −s1, 2!a2 = (s1)

2 − s2, 3!a3 = −(s1)
3 + 3s1s2 − 2s3,

4!a4 = (s1)
4 − 6(s1)

2 + 8s1s3 + 3(s2)
2 − 6s4, etc.

in particular det A = (−1)nan, that is the determinant of any square matrix

only depends of the traces sr, thus it is evident than A and its transpose

have the same determinant.

This method based in the relations (4) and has applications in numerical

analysis, but it also is very useful in theoretical work on several topics of

general relativity as the embedding of Riemannian spaces [13-15], algebraic
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studies of the Ricci tensor [16-23], alternative gravitational theories [24], etc.

because there it is necessary to determine the characteristic polynomial of

a second order tensor. Besides, the Leverrier-Takeno procedure finds utility

in the study of the motion of a classical charged particles into a uniform

electromagnetic field [25-29].

3 Faddeev Method

The algorithm proposed by Faddeev [11,12] for to obtain A−1 is a sequence

of algebraic operations on the powers Ar and their traces, in fact, his method

is given by the following instructions:

(7)

A1 = A, q1 = trA1, B1 = A1 − q1I,

A2 = B1A, q2 = 1

2
trA2, B2 = A2 − q2I,

...
...

...

An−1 = Bn−2A, qn−1 = 1

n−1
trAn−1 Bn−1 = An−1 − qn−1I,

An = Bn−1 qn = 1

n
trAn

then

(8) A−1 =
1

qn

Bn−1

As an example, if we apply (7) tot the case n = 4, then it is easy to see

that the corresponding qr reproduce (6) resulting qj = −aj, and besides

the expression (8) is identical to (3) from Cayley-Hamilton identity. By

mathematical induction really is immediate to prove that (7) and (8) are

equivalent to (3), (4) and (5), showing thus that the Faddeev technique has

its origin in the Leverrier-Takeno method plus Cayley-Hamilton theorem.
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