An acoustic wave equation for pure P wave in 2D TTI media

Ge Zhan¹, Reynam Pestana² and Paul Stoffa³

¹KAUST, Thuwal, Saudi Arabia
²CPGG/UFBA and INCT-GP/CNPq, Salvador, Bahia, Brazil
³UT Austin, Austin, Texas, USA.

12th CISBGF
15-18 August 2011
Rio de Janeiro, Brazil
Vertical Transversely Isotropic (VTI) and Tilted Transversely Isotropic (TTI)
Tilted Transversely Isotropic (TTI)
Introduction

Global (vertical) symmetry assumption

Local (tilted) symmetry assumption (more realistic)
Motivation

VTI RTM image - The sub-salt image is incoherent and defocused.

TTI RTM image - Continuous subsalt sediments and clear terminations.

(From Huang et al., 2009)
The 3D TTI coupled equations (Fletcher, 2008; Zhang and Zhang, 2008) \((v_s = 0.0)\)

\[
\begin{align*}
\frac{1}{v_{p0}^2} \frac{\partial^2 p}{\partial t^2} &= (1 + 2\delta)H_2(p + q) + H_1 p \\
\frac{1}{v_{p0}^2} \frac{\partial^2 q}{\partial t^2} &= 2(\epsilon - \delta)H_2(p + q)
\end{align*}
\]

\[
\begin{align*}
H_1 &= [\sin \theta \cos \phi \partial_x + \sin \theta \sin \phi \partial_y + \cos \theta \partial_z]^2 \\
H_2 &= (\partial_x^2 + \partial_y^2 + \partial_z^2) - H_1
\end{align*}
\]

where \(p\) is the pressure wavefield, \(q\) is an introduced auxiliary wavefield, \(\epsilon\) and \(\delta\) are Thomson’s parameter; \(\theta\) and \(\phi\) are the dip angle and azimuth angle of the symmetry axis.
BP 2007 TTI model - parameters
BP 2007 TTI model

Dataset Benchmark - Modeling
Forward Modeling Simulation (unstable)
Title Angle Variation

Distance (km)

Depth (km)

Title angle θ

$\text{grad}(\theta)$
Snapshots

(a) Unstable TTI snapshot at t=8 sec

(a) Stable TTI snapshot at t=8 sec
RTM images - Old methods

Isotropic RTM Image

TTI RTM Image

Depth (km)

Distance (km)
RTM images - Old methods

Isotropic RTM

TTI RTM
The equations of P and SV wave phase velocity gives (Pestana et al., 2011 - 12th CISBGf)

\[
\begin{align*}
\omega^2 &= v_{p0}^2 \left[(1 + 2\epsilon) k_r^2 + k_z^2 - \frac{2(\epsilon-\delta) k_r^2 k_z^2}{k_z^2 + F k_r^2} \right] \\
\omega^2 &= v_{p0}^2 \left[\frac{v_{s0}^2}{v_{p0}^2} (k_r^2 + k_z^2) + \frac{2(\epsilon-\delta) k_r^2 k_z^2}{k_z^2 + F k_r^2} \right]
\end{align*}
\]

where \(F = 1 + \frac{2\epsilon}{f} \). For simplicity, we proceed with a choice \(F = 1 \).

Equations hold for TI media with a vertical symmetry axis (VTI).
Decoupled wave equations equation for TTI media

Dispersion relations for TTI media with arbitrary orientation of symmetry axis can be deduced from VTI equations through a variable change (3D rotation).

The wavenumber operators in the rotated coordinates system write

\[
\begin{bmatrix}
\hat{k}_x \\
\hat{k}_y \\
\hat{k}_z \\
\end{bmatrix} =
\begin{bmatrix}
\cos \theta \cos \phi & \cos \theta \sin \phi & \sin \theta \\
-\sin \phi & \cos \phi & 0 \\
-\sin \theta \cos \phi & -\sin \theta \sin \phi & \cos \theta \\
\end{bmatrix}
\begin{bmatrix}
k_x \\
k_y \\
k_z \\
\end{bmatrix}
\]

Then we have:

\[
\begin{cases}
\hat{k}_r^2 = k_r^2 - \sin^2 \theta (\cos^2 \phi k_x^2 + \sin^2 \phi k_y^2 - k_z^2 + \sin 2\phi k_x k_y) \\
+ \sin 2\theta (\cos \phi k_x k_z + \sin \phi k_y k_z) \\

\hat{k}_z^2 = k_z^2 - \sin^2 \theta (\cos^2 \phi k_x^2 + \sin^2 \phi k_y^2 - k_z^2 + \sin 2\phi k_x k_y) \\
- \sin 2\theta (\cos \phi k_x k_z + \sin \phi k_y k_z)
\end{cases}
\]
Time-wavenumber equations for TTI media

2-D case version for P wave:

\[
\frac{1}{v_p^2} \frac{\partial^2 P}{\partial t^2} = - \left\{ k_x^2 + k_z^2 \right. \\
+ (2\epsilon \cos^4 \theta + 2\delta \sin^2 \theta \cos^2 \theta) \frac{k_x^4}{k_x^2 + k_z^2} + (2\epsilon \sin^4 \theta + 2\delta \sin^2 \theta \cos^2 \theta) \frac{k_z^4}{k_x^2 + k_z^2} \\
+ (-4\epsilon \sin 2\theta \cos^2 \theta + \delta \sin 4\theta) \frac{k_x^3 k_z}{k_x^2 + k_z^2} + (-4\epsilon \sin 2\theta \sin^2 \theta - \delta \sin 4\theta) \frac{k_x k_z^3}{k_x^2 + k_z^2} \\
+ (3\epsilon \sin^2 2\theta + \delta \cos^2 2\theta + \delta \cos 4\delta) \frac{k_x k_z^2}{k_x^2 + k_z^2} \left\} P
\]

and SV wave:

\[
\frac{1}{v_p^2} \frac{\partial^2 P_{SV}}{\partial t^2} = - \left\{ \frac{v_{p0}^2}{v_{SO}^2} (k_x^2 + k_z^2) + (\epsilon - \delta) \right\} \left\{ 2 \sin^2 \theta \cos^2 \theta \frac{k_x^4}{k_x^2 + k_z^2} \\
+ 2 \sin^2 \theta \cos^2 \theta \frac{k_z^4}{k_x^2 + k_z^2} + \sin 4\theta \frac{k_x^3 k_z}{k_x^2 + k_z^2} + (- \sin 4\theta) \frac{k_x k_z^3}{k_x^2 + k_z^2} \\
+ (\cos^2 2\theta + \cos 4\theta) \frac{k_x k_z^2}{k_x^2 + k_z^2} \right\} P_{SV}
\]
The solution of the P pure wave equation can be written as (Pestana and Stoffa, 2010)

\[p(t + \Delta t) = -p(t - \Delta t) + 2 \cos(L\Delta t)p(t) \]

where the pseudo-differential operator is defined as

\[
-L^2 = - \left\{ k_x^2 + k_z^2 \\
+ (2\epsilon \cos^4 \theta + 2\delta \sin^2 \theta \cos^2 \theta) \frac{k_x^4}{k_x^2 + k_z^2} + (2\epsilon \sin^4 \theta + 2\delta \sin^2 \theta \cos^2 \theta) \frac{k_z^4}{k_x^2 + k_z^2} \\
+ (-4\epsilon \sin 2\theta \cos^2 \theta + \delta \sin 4\theta) \frac{k_x^3 k_z}{k_x^2 + k_z^2} + (-4\epsilon \sin 2\theta \sin^2 \theta - \delta \sin 4\theta) \frac{k_x k_z^3}{k_x^2 + k_z^2} \\
+ (3\epsilon \sin^2 2\theta + \delta \cos^2 2\theta + \delta \cos 4\delta) \frac{k_x^2 k_z^2}{k_x^2 + k_z^2} \right\} P
\]

The cosine function is approximated by

\[
\cos(L\Delta t) = \sum_{k=0}^{M} C_{2k} J_{2k}(R\Delta t) Q_{2k}(iL/R) \quad M > R\Delta t
\]

For anisotropic the value of R for 2D case is given by

\[R = \pi v_{\text{max}} (1 + |\epsilon|_{\text{max}}) \sqrt{1/\Delta x^2 + 1/\Delta z^2} \]
$V_{p0} = 3000 \text{m/s}; \epsilon = 0.24; \delta = 0.0$ and $\theta = 45^0$

TTI coupled equations $V_{s0} = 0.0$ (a); non zero V_{s0} wave velocity (b) Pure P wave (c) and SV (d)
Anisotropic parameters - 2D wedge model
Wavefield snapshots - 2D wedge model

Wedge model (a); TTI coupled equations $V_{s0} = 0.0$ (b); non zero V_{s0} wave velocity (c) Pure P wave (d).
Wedge model (a); TTI coupled equations $V_{s0} = 0.0$ (b); non zero V_{s0} wave velocity (c) Pure P wave (d).
Wavefield snapshots - 2D wedge model

Wedge model (a); TTI coupled equations $V_{s0} = 0.0$ (b); non zero V_{s0} wave velocity (c) Pure P wave (d).
2D BP TTI model (partial region)
Wavefield snapshots in the 2D BP TTI model

Gradient of dip angle model (a); TTI coupled equations $V_{s0} = 0.0$ (b); with a finite V_{s0} wave velocity (c) Pure P wave (d).
RTM images - New method

VTI REM of the partial BP model
RTM images - New method

TTI REM of the partial BP model
RTM images - Zoom

Vp

VTI RTM

TTI RTM
Conclusions

- We present an approach for modeling and migration in an acoustic TTI media using decoupled P wave and SV wave equations.

- Compared with TTI coupled wave equations published in the geophysics literature, the proposed decoupled equations are stable.

- To avoid numerical dispersion and produce high quality images, the rapid expansion method (REM) and pseudo-spectral method are employed for numerical implementation.

- To make this RTM computation possible high speed and parallel computers are needed. (For examples, GPU clusters)
Conclusions

- We present an approach for modeling and migration in an acoustic TTI media using decoupled P wave and SV wave equations.

- Compared with TTI coupled wave equations published in the geophysics literature, the proposed decoupled equations are stable.

- To avoid numerical dispersion and produce high quality images, the rapid expansion method (REM) and pseudo-spectral method are employed for numerical implementation.

- To make this RTM computation possible high speed and parallel computers are needed. (For examples, GPU clusters)
Conclusions

- We present an approach for modeling and migration in an acoustic TTI media using decoupled P wave and SV wave equations.

- Compared with TTI coupled wave equations published in the geophysics literature, the proposed decoupled equations are stable.

- To avoid numerical dispersion and produce high quality images, the rapid expansion method (REM) and pseudo-spectral method are employed for numerical implementation.

- To make this RTM computation possible high speed and parallel computers are needed. (For examples, GPU clusters).
Conclusions

- We present an approach for modeling and migration in an acoustic TTI media using decoupled P wave and SV wave equations.

- Compared with TTI coupled wave equations published in the geophysics literature, the proposed decoupled equations are stable.

- To avoid numerical dispersion and produce high quality images, the rapid expansion method (REM) and pseudo-spectral method are employed for numerical implementation.

- To make this RTM computation possible high speed and parallel computers are needed. (For examples, GPU clusters).
Acknowledgments

- The authors for funding from the King Abdullah University of Science and Technology (KAUST).

- Pestana for funding from CNPq and INCT-GP/CNPq.

- BP for making the 2007 2D TTI benchmark dataset and velocity model available.