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Apresentação

Desde a sua criação, a PETROBRAS tem investido recursos consideráveis na
formação e desenvolvimento de seus empregados, através de treinamento interno e
externo, incluindo iniciativas em parcerias com Universidades brasileiras. Através
do seu Programa de Editoração de Livros Didáticos, a Universidade Petrobras se
associa à Universidade Federal da Bahia para possibilitar a edição deste livro. A
Empresa expressa assim apoios decisivos ao desenvolvimento cient́ıfico. A idéia
para a publicação deste livro surgiu em 1996, quando o Dr. Popov atuava como
Professor no Curso de Pós-Graduação em Geof́ısica do Instituto de Geociências da
Universidade Federal da Bahia. O livro representa uma importante contribuição
para o estudo do chamado método dos feixes gaussianos, onde o autor é um reno-
mado pesquisador. Este método tem importantes aplicações em geof́ısica de ex-
ploração, particularmente no processamento dos dados de reflexão śısmica, essen-
ciais para a investigação de jazidas de petróleo.
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Foreword

Since its foundation in 1954, Petrobras has invested large amount of resources in
its employees’ education, both through internal/external training and partnerships
with Brazilian Universities. Through its Books Publishing Program, the Petrobras
University joins the Universidade Federal da Bahia–Brazil, to support the publi-
cation of this book. The Company thus establishes a positive support to scientific
development.

The idea to publish this book arose in 1996, when Dr. Popov was working as
a Professor in the Graduated Course in Geophysics at Universidade Federal da
Bahia. This book plays a significant contribution for the study and applications
of the so-called method of Gaussian beams, in which the author is a renowned
researcher. That method is widely applied in exploration geophysics, particularly
in the processing of reflection seismic data, which are of prime importance to the
exploration of oil and gas accumulations.
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Preface
This book is based on a course of lectures delivered to postgraduate students in
Geophysics at the Federal University of Bahia, Salvador, Brazil (CPGG, UFBa).
In 1997-1998 these lectures were delivered at the Karlsruhe University, Germany.
It is devoted to high-frequency approximation methods of the theory of wave prop-
agation widely used in geophysical exploration, vz, the ray and the Gaussian beam
methods. My main goal is to offer a consistent and reasonably detailed descrip-
tion of these methods which could provide their deeper understanding, enabling
the reader to use them for solving geophysical exploration problems. Along with
the classical results known in the ray theory since 1950s recent investigations on
validity of the ray method are also included. As for the Gaussian beam method
suggested in 1980s, I do not know of any monograph so far, which provides its
consistent description.

I address this book to students and young scientists not very experienced in
the field of high frequency propagation. That predetermines the methodological
approach to the material of the book, which should be regarded as a textbook.
I tried to follow some basic methodological requirements. Firstly, all material
was put into strict order from simple to more complicated topics, and this order
contains and preserves the main thread of the subject. Secondly, there should be
no gaps in the mathematics underlying the topics, and detailed descriptions of
basic technical tricks were consistently given.

For this reason the ray theory is described first for the reduced wave equation
and then for the elastodynamic equations. The leading thread in the case of the
ray theory which I accept and follow is to consider the ray method as an extension
to inhomogeneous media and curved interfaces, with smoothly and slowly varying
properties on the wavelength scale, of the theory of plane waves in homogeneous
media with plane interfaces. I hope and believe that such a look about the ray
theory should help the reader to build ‘common sense’ and a clearer understanding
of the theory, in particular when reflection and transmission are discussed.

The Gaussian beam method stands aside this thread and is actually a more
specific extension of the ray theory. It has the main advantage of enabling one to
overcome caustic problems. However, the paraxial ray method acts as a bridge to
the Gaussian beams, especially if we take into account the mathematical technique
underlying the Gaussian beam method with, perhaps, one exception. A problem of
decomposition of an initial wave field into Gaussian beams (or a problem of initial
amplitudes for Gaussian beams) requires knowledge of asymptotic calculations of
integrals of oscillating functions. At this point, in order to help the reader the
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basic ideas of the stationary phase method are described in the Appendix.
It becomes clear at first sight that both the ray and the Gaussian beam methods

require at least some knowledge of advanced mathematics. I think that the only
way to provide a deep understanding of the methods is simply to present the
required mathematics in detail. So the reader will find auxiliary information on
mathematics and most calculations are given in detail . It should be noticed that I
do not use very modern and sometimes formal mathematical language, and try to
simplify it as much as possible in accordance with the traditions of St. Petersburg
Mathematical School. Therefore a refined specialist, perhaps, will be unsatisfied
and will even find it outdated.

Obviously, the material in this book should be regarded as a tool for geophysical
applications. Therefore, I try to illuminate the algorithmic essence of the methods
under consideration and to supply examples where corresponding calculations are
carried out analytically. They should also help the reader to master the subject.

Being conceived as a textbook, it differs from other books dealing with the ray
method. In some of them numerous applications of the ray theory are described,
while the mathematics underlying the theory is omitted. In others, the stress is
made on modern mathematical language and technique, what seems to be rather
complicated for a first study of the ray theory. Thus, I hope this book will suit a
first detailed study of both the ray and the Gaussian beam methods.

It may be mentioned that the idea to present my lectures in the form of a
book germinated during my second visit to CPGG in 1996. Being instrumental
for my two previous visits, Prof. E. Sampaio acted as an editor helping me very
much in preparing the book, and provided the opportunity and the facilities for
its publication. I express my deep gratitude to him for that. Worth of mention
are the contributions of Prof. O. Lima and Prof. M. Porsani for my present visit,
which enabled the completion of the work. I am also kindly indebted to them.

I am also thankful to Mr. J. Lago for his hard and tedious work of typing the
text and drawing the figures, and to Prof. H. Sato for improving the final version
of the book. My former students have corrected several mistakes in the formulas
and I am thankful to all of them, especially to Sergio Oliveira and Julian Celedon.
I express my deepest gratitude to everyone in the staff of CPGG/UFBA, where I
had the opportunity to work in a warm and friendly atmosphere. I also cordially
thank Dr. I. Mufti for his valuable recommendations which helped in improving
the presentation of the material. This work has been supported largely by the
Brazilian Council of Scientific and Technical Development (CNPq) and partly by
PETROBRAS.

Mikhail M. Popov
Universidade Federal da Bahia, Instituto de Geociências

on leave from V. A. Steklov Mathematical Institute, St. Petersburg, Russia.

Salvador, Brazil
February, 2002.
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Introduction

Undoubtedly, the ray method remains one of the most powerful and broadly used
methods for investigating both forward and inverse wave propagation problems in
modern exploration geophysics. Some fundamental ideas of the ray theory have
been known in physics for a long time. Probably, the first consistent description of
the ray method, as a mathematical tool for studying wave propagation problems
in electrodynamics, was given by R.K. Luneburg in his lectures in the mid 1940s.
Unfortunately, his Lecture Notes were published much later - see Luneburg (1966),
and, in fact, they remain inaccessible in scientific libraries.

In 1956, V.M. Babich suggested the ray method for the elastodynamic equa-
tions in the case of isotropic inhomogeneous media. Though this three-paged-
article was published in a famous Russian journal, it has never been translated
into English.

In 1959, F.C. Karal and J.B. Keller, succeeding Luneburg’s Lecture Notes,
published a consistent description of the ray method in isotropic elastodynamics.
Thus, starting from the late 1950s the ray method begins its triumphal path in
geophysics. Many important aspects of the ray theory and its applications can be
found in monographs by Červený and Ravindra (1971), Červený, Molotkov and
Pšenčik (1977), Hunyga (1984), Kravtsov and Orlov (1990).

The ray method has two main advantages. It provides a physical insight to
the wave propagation phenomena in rather complicated geophysical models, by
describing the total wave field as a sum of different types of waves generated
in the problem under consideration. It gives rise to rather effective and not so
time consuming numerical algorithms when compared to the finite difference and
finite element methods. On the other hand, the ray method suffers the so-called
caustic problems, which means precisely that if the rays associated with the wave
propagation problem under investigation touch a surface in 3D (or a curve in 2D),
the geometrical spreading vanishes and the ray amplitude becomes singular on
it, while the real wave field remains finite and smooth. This surface is called the
envelope to the ray field, or the caustic surface. Therefore, the ray method does not
correctly describe the wave field in the vicinity of the caustics. Unfortunately, in
geophysical models of elastic media the behavior of rays is complicated and they
normally form many caustics of different geometrical structures. Thus, the ray
method faces serious and unpleasant caustic problems in geophysical applications.

In 1965, V.P. Maslov suggested a new method, which provides a uniform mathe-
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matical representation for high frequency asymptotics of the wave field everywhere
including caustics of arbitrary geometrical structures. This method is known now
as Maslov’s method, or the method of canonical operator - see Maslov (1965) and
Maslov and Fedoryk (1976). Being elegant from the mathematical point of view
and efficient in pure theoretical investigations, it leads to a numerical algorithm
that strongly depends upon the geometrical structure of caustics formed by the
rays, and therefore can hardly be regarded as a technological one.

On the other hand, the Gaussian beam method gives rise to a numerical al-
gorithm for the calculation of the high frequency wave field independently of the
position of an observation point. Briefly, it can be explained as follows. To calcu-
late the wave field at an observation point M, we have to cover the vicinity of M
by a fan of rays distributed in this vicinity more or less uniformly. For each ray we
have to derive a Gaussian beam propagating along the ray and then to sum the
contribution of each Gaussian beam to the point M over all rays from the fan. As
every Gaussian beam has no singularity on caustics, the numerical algorithm does
not depend on the position of M with respect to a caustic and on the geometrical
structure of the caustic. The Gaussian beam method, as a new approach for the
computation of wave fields in high frequency approximation, was suggested by
M.M. Popov in his theoretical papers - see Popov (1981, 1982). The results of the
first numerical experiments were presented in works by Kachalov and Popov (1981)
and Červený, Popov and Pšenčik (1982). The survey article by Babich and Popov
(1989) contains the review of the main ideas and numerical results concerning the
Gaussian beam method and its relation with other asymptotic methods.

This book contains a consistent description of the ray theory and the Gaussian
beam method for inhomogeneous isotropic elastic media with smooth interfaces,
and includes also the paraxial ray theory which, in fact, makes a bridge between
them. The material of the book is supposed to be presented in a self-sufficient
form in such a way that the reader could master it without constantly looking
at manuals on mathematics. Auxiliary mathematical details, necessary for the
understanding, are included into the main text.

In Chapter 1 the main ideas of the ray theory and its mathematical technique
are demonstrated on, perhaps, the simplest example of the scalar wave equation
when they are not hidden under heavy mathematics. It also includes a relatively
new approach to the problem of validity of the ray method, based on the asymp-
totic character of the ray series. This approach was suggested and examined on
some model problems by Popov and Camerlynck (1996).

Chapter 2 contains a complete theory of the eikonal equation based on the vari-
ational calculus. This theory underlies the ray method both for the acoustic wave
equation and for the elastodynamic equations. Auxiliary material on variational
calculus are included in the text.

Chapter 3 is devoted to the theory of transport equation. Though the theory
is not universal and requires additional development in the case of elastodynamic
equations, it contains the basic concept of the ray method, namely the ray coordi-
nates and geometrical spreading. The chapter is important for understanding the
ray theory in elastodymanics presented in Chapter 7.
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The essence of Chapter 4 is to illustrate the physical statement that the energy
of the wave field in ray approximation propagates along ray tubes. It also contains
a discussion on the caustic problem, which turns out to be the main obstacle for
the applications of the ray method.

The main idea of the paraxial ray theory presented in Chapter 5 can be for-
mulated as follows. If we consider a narrow ray tube surrounding a fixed central
ray of the tube, we may linearize Euler’s equations for the rays from the tube
because they are close to the central one. This results in a significant simplifi-
cation of Euler’s equations, and therefore of the whole ray theory built on them.
These equations are known in classical mechanics as equations in variations. Of
course, that theory remains valid only in the vicinity of the central ray. In fact,
the paraxial ray theory was used and developed by specialists in optical resonators
for lasers in the 1960s. In particular, the ray centered coordinates, broadly used in
the paraxial theory and in the Gaussian beam method, were introduced by Popov
(1969) in studies on self oscillations in opened resonators. In geophysics the parax-
ial approach was firstly used by Popov and Pšenčik (1978), see also Popov (1977),
for the dynamic ray tracing problem. The chapter includes the solution of the
latter problem presented in a slightly different way from the original paper. Re-
duction to 2D and to 2.5D and the example of constant gradient velocity model
accompanies the main material in order to facilitate understanding.

Chapter 6 starts with a preparatory material for the successive chapter devoted
to the ray method in elastodynamics. It also contains the solution of the initial
problem for geometrical spreading on a smooth interface, which completes the
dynamic ray tracing problem from the previous chapter.

Chapter 7 constitutes the main body of the book, and concerns the ray theory in
elastodynamics. Started with the auxiliary topic of plane waves in a homogeneous
elastic medium, it contains the derivation of the eikonal and transport equations,
and the solution of the initial data problem for the ray amplitudes in the case
of point sources for general isotropic inhomogeneous elastic medium. In the last
section, the validity problem of the ray theory is discussed. A simple example
shows that the second term of a ray series may increase with an increase in distance
between a source and an observation point, thus leading to a strong limitation in
the use of the ray method.

Chapter 8 is devoted to the theory of the Gaussian Beam method and its
applications to direct wave propagation problems. Individual gaussian beams as
asymptotic solutions to Maxwell’s equations and Helmholtz’s wave equation were
developed by specialists in optical resonators for gas lasers in the 1960s. As for the
elastodynamic equations, N.Ya. Kirpichnikova (1971) developed Gaussian beams
in inhomogeneous isotropic media. The integral over Gaussian beams as an asymp-
totic representation of a scalar wave field in the high frequency approximation was
firstly suggested by Babich and Pankratova (1972) in pure mathematical studies.
The consistent description of the Gaussian Beam method in elastodynamics was
given by Popov (1983). The material of the previous two chapters allows for sig-
nificant simplification of the theory of an individual Gaussian beam. This theory
is illustrated by a simple example and by a reduction to 2D case. The results of



4

numerical experiments are taken from papers by Kachalov and Popov (1985,1988).
More applications of the Gaussian Beam method can be found in the review papers
by Červený (1985) and by Babich and Popov (1989).

The main aim of the conclusive Chapter 9 is to discuss the relationship between
the asymptotics of the wave field in the frequency and time domain and to point
out some of its peculiarities. It has been known for a long time that the Fourier
transform is the proper tool for making a bridge between them. However, there
is another approach based on the use of the so-called space-time Gaussian beams.
This approach, suggested by Popov (1987), is briefly discussed in the chapter. But
the full theory turns out to be more complicated and therefore is not presented in
the book.

In the Appendix, the main ideas of the stationary phase method are illus-
trated by an example of a single integral having one non-degenerate critical point.
For more a detailed description of the method and complicated cases of manifold
integrals see Smirnov (1964), Bleistein and Handleman (1986) and Wong (1989).



1
Basic equations of the ray theory

for the reduced wave equation

1.1 Main ideas leading to the ray theory

Consider the wave equation

∆W − 1

C2
∂2W

∂t2
= 0 ,

where t means time,

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
is the the Laplace operator,

C is the velocity of propagation of the wave field W . Suppose that C is constant.
Let us seek a solution in the following form

W = eiϕ = cosϕ+ i sinϕ, i2 = −1, ϕ = −ωt+ k1x+ k2y + k3z ,

where ω, k1, k2, k3 are constants.
In this case we have

∂W

∂t
= eiϕi

∂ϕ

∂t
= −iωW ;

∂2W

∂t2
= (−iω)2W ;

∂W

∂x
= ik1W ;

∂2W

∂x2
= (ik1)

2W .

Therefore

∆W − 1

C2
∂2W

∂t2
= W

[

− (−iω)2
C2

+ (ik1)
2 + (ik2)

2 + (ik3)
2

]

= 0 .

5



6 Basic equations of the ray theory

Due to W 6≡ 0 it necessarily means that

ω2

C2
= k21 + k22 + k23 . (1.1)

Definition: ω is called the circular frequency, ~k = k1~i+ k2~j + k3~k′ is the wave
vector and

|~k| =
√

k21 + k22 + k23 =
2π

λ

where λ is the wavelength.
Now from (1.1) we get

ω2

C2
= |~k|2 → ω

C
= |~k| = 2π

λ
.

Thus we obtain a solution in the form of a plane wave

W = Aei(−ωt+k1x+k2y+k3z)

where A is the constant amplitude of the plane wave, and ϕ = −ωt+k1x+k2y+k3z
is the phase of the plane wave.

Why is it called plane wave?
Let us introduce the radius-vector ~r = x~i+ y~j + z~k′, then

ϕ = −ωt+ (~k, ~r)

where, as usual, (~k, ~r) means the scalar product between the vectors ~k and ~r.
Consider a surface on which the phase is fixed (Fig. 1.1), say,

ϕ = 0→ (~k, ~r) = ωt ,

so for each moment t this is a plane in 3D with vector ~k being orthogonal to it.

x

y

z

~k

(~k, ~r) = ωt

Figure 1.1: A surface of constant phase ϕ = 0 in a 3D case.
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If we consider further ~r = (~k/|~k|)s, then (~k, ~r) = ωt takes the form |~k|s = ωt.
It follows now that

|~k|ds
dt

= ω → ds

dt
=

ω

|k| = C .

Thus, the surface of constant phase moves in space with a velocity C in the fixed
direction by the vector ~k.

Plane wave solutions play a remarkable role in mathematical physics because
many types of solutions can be presented as a superposition of plane waves. Obvi-
ously, a plane wave solution does not exist if the velocity varies. But suppose that
the velocity varies slowly. In this case it is natural to seek a solution for the wave
equation in a form of the so-called deformed plane waveW = A(t, x, y, z)eiϕ(t,x,y,z)

where now the amplitude A is no longer constant, but depends on coordinates,
and the phase function ϕ is not a linear function. We arrive at a special analytical
form of an approximate solution of the wave equation which is called now the ray
series, and we may assert that the ray method is an extension of the plane wave
theory to slowly varying media.

1.2 Eikonal and transport equations; the problem
of validity of the ray series

We shall consider further a wave field harmonic in time. It means that we assume

W (t, x, y, z) = e−iωtU(x, y, z) .

By inserting the latter expression into the wave equation we get for U the
reduced wave equation or Helmholtz equation

(

∆ +
ω2

C2

)

U = 0 .

Let us derive the eikonal and transport equations. Now C = C(x, y, z) and we
seek a solution in the form

U = eiωτ(x,y,z)A(x, y, z)

where τ is called eikonal, A is the amplitude and the circular frequency ω is
supposed to be a large parameter. By differentiating U with respect to x we get

∂U

∂x
= eiωτ

(

iω
∂τ

∂x
A+

∂A

∂x

)

,

∂2U

∂x2
= eiωτ

{

iω
∂τ

∂x

(

iω
∂τ

∂x
A+

∂A

∂x

)

+ iω
∂2τ

∂x2
A+ iω

∂τ

∂x

∂A

∂x
+
∂2A

∂x2

}

=

= eiωτ

{

−ω2
(

∂τ

∂x

)2

A+ iω

(

2
∂τ

∂x

∂A

∂x
+
∂2τ

∂x2
A

)

+
∂2A

∂x2

}

.
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Let us introduce additional notations

grad τ = ∇τ =
∂τ

∂x
~i+

∂τ

∂y
~j +

∂τ

∂z
~k′ ,

(grad τ, grad τ) = (∇τ)2 =

(

∂τ

∂x

)2

+

(

∂τ

∂y

)2

+

(

∂τ

∂z

)2

,

(grad τ, grad A) = (∇τ,∇A) =
∂τ

∂x

∂A

∂x
+
∂τ

∂y

∂A

∂y
+
∂τ

∂z

∂A

∂z
.

By inserting U = eiωτA into the reduced wave equation and by taking into
account previous formulas we obtain

(

∆+
ω2

C2

)

U=eiωτ
{

ω2
(

1

C2
−(∇τ)2

)

A+iω
(

2(∇τ,∇A)+∆τA
)

+∆A

}

.

We suppose ω is a large parameter of the problem and impose the following
equations

(∇τ)2 =
1

C2
(eikonal equation) ;

2(∇τ,∇A) +A∆τ = 0 (transport equation),

in order to eliminate larger terms. But ∆A remains and we have no chance to
eliminate it. Thus, in this case we are not able to satisfy the equation exactly!

In order to decrease the discrepancy, we introduce an infinite series to U as
follows

U ∼ eiωτ(x,y,z)
∞
∑

n=0

An(x, y, z)

(−iω)n (ray series) .

By inserting this series into the reduced wave equation we obtain the eikonal
equation

(∇τ)2 =
1

C2

and a recurrent set of transport equations

2(∇τ, ∇An+1) +An+1∆τ = ∆An , n = −1, 0, 1 · · · , A−1 ≡ 0.

For n = −1 we get the transport equation for the main term of amplitude

2(∇τ,∇A0) +A0∆τ = 0 .

Let us dwell on the asymptotic character of the ray series and on the problem
of validity of the ray method.

Definition of asymptotic series.
Consider a function f(z) and let z be large, i.e. z →∞ .
We say that

∑∞
n=0 an/z

n is an asymptotic series for the function f(z) as z →∞
if for an arbitrary fixed N the following inequality holds true

∣

∣

∣

∣

∣

f(z)−
N
∑

n=0

an
zn

∣

∣

∣

∣

∣

≤ const

zN+1
,
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n = 0

n

3 421

∣

∣

∣

an

zn

∣

∣

∣

Figure 1.2: Typical behavior of terms in an asymptotic series as a function of
number n.

where the const does not depend on z.
We write in this case

f(z) ∼
∞
∑

n=0

an
zn

.

Thus, by increasing z we can achieve on the right-hand side of the latter in-
equality a value as small as desired and therefore the approximation of f(z) by
the sum of N terms will be as precise as necessary. Suppose now that the value of
z is restricted from above, which is exactly what we face in most applications. In
this case the question of applicability of the asymptotics of f(z) is rather different
from the one discussed above. Indeed, a typical behavior of terms of an asymp-
totic series as a function of its number n is depicted in Fig. 1.2. There are some
decreasing terms while all other terms usually increase. Of course, the position of
the minimum on Fig. 1.2 depends upon the particular value of the argument z. In
order to approximate the function f(z) we have to take only the decreasing terms
of the asymptotic series. If, for example, n∗ is the number of the smallest term of
the asymptotic series, then one cannot expect to achieve a better accuracy than
|an∗/zn∗ | in approximating f(z) by the asymptotic series and, to this end, one has
to take the sum of (n∗ − 1) terms. If however, there is no descending branch on
Fig.1.2 for a given value of z the asymptotic series cannot be used for approxima-
tion f(z) at all. Thus, the criteria of applicability of an asymptotic series should
be linked to the existence of a descending branch of the asymptotic series.

Let us come back to the ray series.
Normally the ray series in the frequency domain does not converge and we may

expect it to be an asymptotic series for a certain exact solution with respect to ω
tending to infinity (Note: it is still a difficult mathematical problem to prove such
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a theorem!). If it is so, we may expect that, by using only the main term of the
ray series, the following inequality holds

∣

∣U − eiωtA0
∣

∣ ≤ const

ω
,

where the const depends on geometrical parameters of the problem under investi-
gation, i.e. the distance between a source and an observation point, curvatures of
interfaces and so on (but not upon ω).

Unfortunately, it is very difficult to obtain an analytical expression for the const
and therefore the latter inequality cannot be used for studying a region of validity
of the ray method. By dealing with the ray series we are not able to study the
behaviour of its coefficients as a function of the number, not even in simple model
problems, because well-known formulas for the coefficients are given in implicit
form and their analytical investigation seems to be an unrealistic problem.

Nevertheless, a quite reliable criterion of validity of the ray method can be
given on the basis of two terms of the ray series.

If the ratio |A1/(ωA0)| is less than one for a given ω and other parameters
of the problem under consideration, then we can approximate an exact solution
U by the main term A0e

iωτ because in this case we will get decreasing terms of
the ray series. But if this ratio is equal to one, the main term cannot be used for
approximating U for a given frequency ω and other parameters at all.

Thus, to study a region of validity of the ray method on the basis of the
criterion mentioned above we need to develop a computational algorithm for the
second term of the ray method. We shall discuss this problem in more detail in
Chapter 7.



2
Solution of the eikonal equation

2.1 Fermat’s principle

Consider a 3D medium with a given velocity of wave propagation C = C(x, y, z).
Suppose a signal or wave field propagates along a smooth curve l

l :







x = x(σ)
y = y(σ)
z = z(σ)

from a point A to a point B (Fig. 2.1). Let us compute the time necessary for the
signal to travel from A to B along l.

Obviously, dt = ds/C where ds is an element of length along l. By integrating
over l we get

T [l] =

∫ (B)

(A)

ds

C
.

x

y
z

A

B

Figure 2.1: A curve l along which a signal propagates

11
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This integral is called Fermat’s integral or Fermat’s functional.

It is a curvilinear integral, although it can be reduced to an ordinary integral.
Indeed, we have

ds =
√

dx2 + dy2 + dz2 =
√

ẋ2(σ) + ẏ2(σ) + ż2(σ)dσ

where ẋ = dx/dσ. By taking into account the latter expression we get the ordinary
integral

T [l] =

∫ σB

σA

√

ẋ2(σ) + ẏ2(σ) + ż2(σ)

c
(

x(σ), y(σ), z(σ)
) dσ ≡

∫ σB

σA

L(ẋ, ẏ, ż, x, y, z)dσ ,

where L is Lagrangian.

Fermat’s principle: a signal (either light or a wave field) propagates along such
a curve l between A and B that the integral T reaches a minimum on l.

Finding this curve l is a crucial issue in variational calculus.

2.2 Variation of a functional; Euler’s equations

Consider the simplest case of Fermat’s integral

T [l] =

∫ (B)

(A)

L(ẋ(σ), x(σ))dσ .

σ

x
l + δl

l

σA σB

Figure 2.2: Variation of the curve l with fixed ends.

Let us compare T on different curves, i.e., consider curves l + δl close to l
(Fig. 2.2):

x = x(σ) + δx(σ)

ẋ = ẋ(σ) + δẋ(σ)

where as usual • means d/dσ and variation δx of the curve l is supposed to be
small.
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Let us develop T [l + δl] as follows

T [l + δl] =

∫ B

A

L(ẋ+ δẋ, x+ δx)dσ =

=

∫ B

A

L(ẋ, x)dσ +

∫ B

A

{

∂L

∂ẋ
δẋ+

∂L

∂x
δx+O(δx)2

}

dσ ,

where O(δx)2 implies the terms of second and higher order with respect to the
variations δx, δẋ.

Further we get

∆T[l] = T [l + δl]− T [l] =

∫ B

A

(

∂L

∂ẋ
δẋ+

∂L

∂x
δx

)

dσ +

∫ B

A

O(δx)2dσ ,

where the first integral describes the main linear part of the difference ∆T [l] with
respect to small variations δx, δẋ.

Definition: The linear part of the difference ∆T is called variation (or first
variation) of the functional and is denoted by δT .

Thus, in our case

δT =

∫ B

A

(

∂L

∂ẋ
δẋ+

∂L

∂x
δx

)

dσ .

Note δẋ and δx are not independent. By integrating in parts the first term
under the integral, we get

δT =
∂L

∂ẋ
δx
∣

∣

B

A
+

∫ B

A

(

∂L

∂x
− d

dσ

∂L

∂ẋ

)

δxdσ . (2.1)

This is the formula for the first variation of the functional with mobile ends (it
means that δx

∣

∣

A
and δx

∣

∣

B
may be arbitrary).

The first variation in the case of fixed ends reads

δT =

∫ B

A

(

∂L

∂x
− d

dσ

∂L

∂ẋ

)

δxdσ (2.2)

because in this case
δx
∣

∣

A
= δx

∣

∣

B
= 0 .

Theorem. If T [l] gets min (max) on the curve l, then the first variation δT [l]
on l vanishes, i.e., δT [l] = 0.

Explanation : the proof of this theorem is very similar to the proof of a well-
known theorem in classical analysis which deals with the necessary condition of
max (min) at a point x = xo for a smooth function f(x). Indeed, in the latter
theorem we study the difference

∆f = f(x0 + δx)− f(x0)
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for a small δx and arrive at the conclusion that df
∣

∣

xo
= 0 (or

df

dx

∣

∣

xo
= 0).

In case of a functional T [l] the first variation δT [l] is the main linear part of
∆T [l] (like differential df for ∆f !) and changes its sign together with the sign of
variation δx. But ∆T [l] preserves its sign in a vicinity of max (min), therefore
δT [l] must be equal to zero on the curve l.

Note: if f ′(x0) = 0 we may have max, min or flex point at x = x0. For the
functional we can also have these possibilities!

Consider the problem with fixed ends. Suppose T [l] attains a minimum on the
curve l, then

δT =

∫ B

A

(

∂L

∂x
− d

dσ

∂L

∂ẋ

)

δxdσ = 0

for an arbitrary δx (but small). It follows from here that on the curve l the
following differential equation must hold

d

dσ

∂L

∂ẋ
− ∂L

∂x
= 0.

This is called Euler’s equation (it is an ordinary differential equation of second
order with respect to function x = x(σ)).

Extension to a 3D case.

Let us consider the previous problem in 3D. Now the functional reads

T [l] =

∫ B

A

L(ẋ, ẏ, ż, x, y, z)dσ .

We introduce variations through the formulas

x→ x+ δx, y → y + δy, z → z + δz ,

ẋ→ ẋ+ δẋ, ẏ → ẏ + δẏ, ż → ż + δż ,

and by almost repeating the previous calculations we arrive at the following ex-
pression for the first variation of the functional

δT [l] =

∫ B

A

{(

∂L

∂ẋ
δẋ+

∂L

∂x
δx

)

+

(

∂L

∂ẏ
δẏ +

∂L

∂y
δy

)

+

(

∂L

∂ż
δż +

∂L

∂z
δz

)}

dσ =

=

(

∂L

∂ẋ
δx+

∂L

∂ẏ
δy +

∂L

∂ż
δz

)∣

∣

∣

∣

B

A

+

∫ B

A

{(

∂L

∂x
− d

dσ

∂L

∂ẋ

)

δx+

+

(

∂L

∂y
− d

dσ

∂L

∂ẏ

)

δy +

(

∂L

∂z
− d

dσ

∂L

∂ż

)

δz

}

dσ .

To derive Euler’s equations we have to apply the previous theorem to δT [l] and
to take into account that all variations δx, δy, δz are independent.
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Euler’s equations for the case of L = 1
C

√

ẋ2 + ẏ2 + ż2 take the form














































d

dσ

∂L

∂ẋ
− ∂L

∂x
= 0→ d

dσ

(

ẋ
√

ẋ2 + ẏ2 + ż2
1

C

)

−
√

ẋ2 + ẏ2 + ż2 ∂
∂x

1

C
= 0

d

dσ

∂L

∂ẏ
− ∂L

∂y
= 0→ d

dσ

(

ẏ
√

ẋ2 + ẏ2 + ż2
1

C

)

−
√

ẋ2 + ẏ2 + ż2
∂

∂y

1

C
= 0

d

dσ

∂L

∂ż
− ∂L

∂z
= 0→ d

dσ

(

ż
√

ẋ2 + ẏ2 + ż2
1

C

)

−
√

ẋ2 + ẏ2 + ż2
∂

∂z

1

C
= 0

where σ is a parameter along a curve x = x(σ), y = y(σ), z = z(σ).
Definition: Any solution of Euler’s equations is called an extremal in variational

calculus and a ray in geophysics.
Example 1. Let us take an arc length s along a ray instead of the arbitrary

parameter σ, then

ds =
√

ẋ2 + ẏ2 + ż2dσ → d

ds
=

d
√

ẋ2 + ẏ2 + ż2dσ

and we obtain

d

ds

(

1

C

dx

ds

)

− ∂

∂x

1

C
= 0 ,

d

ds

(

1

C

dy

ds

)

− ∂

∂y

1

C
= 0 ,

d

ds

(

1

C

dz

ds

)

− ∂

∂z

1

C
= 0 ,

or in vectorial form
d

ds

(

~t

C

)

− grad
1

C
= 0 ,

where

~t =
dx

ds
~i+

dy

ds
~j +

dz

ds
~k′

is a unit vector tangent to a ray.
Example 2. Homogeneous medium:

C = const → ∂

∂x

1

C
=

∂

∂y

1

C
=

∂

∂z

1

C
≡ 0

and therefore we get the general solution to Euler’s equations

1

C

dx

ds
= a1 = const, x= a1Cs+ x(0) ;

1

C

dy

ds
= a2 = const, y= a2Cs+ y(0) ;

1

C

dz

ds
= a3 = const, x= a3Cs+ z(0) .
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Thus, rays in a homogeneous medium are straight lines. According to the
definition of the arc length s we get

s =
√

(x− x(0))2 + (y − y(0))2 + (z − z(0))2 =

= Cs
√

a21 + a22 + a23 −→
√

a21 + a22 + a23 =
1

C
.

2.3 Hamiltonian form of the functional and Eu-
ler’s equations

Consider for the sake of simplicity an 1D case, i.e.

T =

∫ B

A

L(ẋ, x)dσ .

We introduce a generalized pulse or generalized slowness through the formula
p = ∂L/∂ẋ and from here we must find ẋ as a function of p, i.e. ẋ = ẋ(p).

The Hamiltonian function is defined by the formula

H = (pẋ− L)
∣

∣

ẋ=ẋ(p)
⇒ H = H(p, x) .

Inversely, L = pẋ−H. In mechanics H means usually the energy of the mechanical
system under consideration.

The expression for the functional now takes the form

T =

∫ B

A

L(ẋ, x)dσ =

∫ B

A

(pẋ−H(p, x)) dσ =

∫ B

A

pdx−H(p, x)dσ .

First variation of T . We introduce both variations of x and p

x→ x+ δx , p→ p+ δp

and after calculations, very similar to the ones presented in the previous section,
we obtain

δT =

∫ B

A

(

δpẋ+ pδẋ− ∂H

∂p
δp− ∂H

∂x
δx

)

dσ =

= pδx
∣

∣

B

A
+

∫ B

A

{(

ẋ− ∂H

∂p

)

δp−
(

ṗ+
∂H

∂x

)

δx

}

dσ .

Euler’s equations in Hamiltonian form follow from the latter expression for δT

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
.

Thus, in Hamiltonian form we have a system of two ordinary differential equations
of first order with respect to x = x(σ) and p = p(σ). In Lagrangian form, we had
only one second order ordinary differential equation with respect to x = x(σ):

d

dσ

∂L

∂ẋ
− ∂L

∂x
= 0 .
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The extension to a 3D case is straightforward. For the Lagrangian L =
L(ẋ, ẏ, ż;x, y, z) we introduce three slownesses p1, p2, p3 corresponding to the
coordinates x, y, z, respectively,

p1 =
∂L

∂ẋ
, p2 =

∂L

∂ẏ
, p3 =

∂L

∂ż
.

This usually nonlinear system of equations has to be solved with respect to ẋ, ẏ,
ż. By inserting the solution into the formula

H = p1ẋ+ p2ẏ + p3ż − L

we obtain the Hamiltonian function H = H(p1, p2, p3;x, y, z). The functional T
takes the form of a curvilinear integral

T =

∫ B

A

L(ẋ, ẏ, ż;x, y, z)dσ =

∫ B

A

p1dx+ p2dy + p3dz −Hdσ

and its first variation reads

δT =
(

p1δx+ p2δy + p3δz
)∣

∣

B

A
+

∫ B

A

{(

ẋ− ∂H

∂p1

)

δp1 +

+

(

ẏ − ∂H

∂p2

)

δp2 +

(

ż − ∂H

∂p3

)

δp3 −
(

ṗ1 +
∂H

∂x

)

δx−

−
(

ṗ2 +
∂H

∂y

)

δy −
(

ṗ3 +
∂H

∂z

)

δz

}

dσ .

Euler’s equations in Hamiltonian form derive from the above formula for δT

ẋ =
∂H

∂p1
, ṗ1 = −∂H

∂x
,

ẏ =
∂H

∂p2
, ṗ2 = −∂H

∂y
,

ż =
∂H

∂p3
, ṗ3 = −∂H

∂z
.

2.4 Solution of the eikonal equation in the case of
a point source

We can describe a ray as a vector function

~r(σ) = x(σ)~i+ y(σ)~j + z(σ)~k′

where x(σ), y(σ) and z(σ) satisfy Euler’s equations.
Consider a family of rays emanating from a point A, where a point source is

located.
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x

y

z

A
M

~rA

Ω

Figure 2.3: The central ray field regular in a domain Ω.

To this end we have to solve Euler’s equations with the following initial data

~r(σ)
∣

∣

σ=0
= ~rA ;

d~r

dσ

∣

∣

σ=0
= ~t ,

where ~t is a tangent vector to the ray at the point A, (if σ = s then |~t| = 1, if σ
is arbitrary then |~t| 6= 1). Suppose we solved the initial value problem for Euler’s
equations for an arbitrary direction of vector ~t. We then obtain a family of rays
which covers some region nearby a point A.

Definition: We say that this family of rays forms a regular field of rays in a
domain Ω if for each point M ∈ Ω there is one and only one ray which starts at A
and reaches M .

Suppose the family of rays is regular in Ω. In order to construct a solution of
the eikonal equation in this case (in domain Ω) we have to perform the following
procedure:

i) for each point M ∈ Ω we must find the ray which reaches M ,

ii) then we must compute Fermat’s integral T =
∫M

A
ds/C along this ray be-

tween points A and M . We thus obtain a function of position M which we
denote by τ(M) = τ(x, y, z), (x, y, z are coordinates of M). Evidently,

τ(M) =

∫ M

A

ds

C
=

∫ M

A

√

ẋ2 + ẏ2 + ż2

C
(

x(σ), y(σ), z(σ)
)dσ .

This function τ(x, y, z) will satisfy the eikonal equation.

Proof. To this end we must calculate ∂τ/∂x, ∂τ/∂y, ∂τ/∂z and substitute them in
the eikonal equation (∇τ)2 = 1/C2.

Consider the variation of T when A is fixed but M is mobile:

δT =

(

∂L

∂ẋ
δx+

∂L

∂ẏ
δy +

∂L

∂ż
δz

)∣

∣

∣

∣

M

+

∫ M

A

{(

∂L

∂x
− d

dσ

∂L

∂ẋ

)

δx+

+

(

∂L

∂y
− d

dσ

∂L

∂ẏ

)

δy +

(

∂L

∂z
− d

dσ

∂L

∂ż

)

δz

}

dσ . (2.3)
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As each time we compute T on a ray, Euler’s equations are satisfied and because
of that integral in (2.3) vanishes. On the other hand dτ = δT and therefore

dτ ≡ ∂τ

∂x
dx+

∂τ

∂y
dy +

∂τ

∂z
dz =

(

∂L

∂ẋ
δx+

∂L

∂ẏ
δy +

∂L

∂ż
δz

)∣

∣

∣

∣

M

.

Further,
dx = δx

∣

∣

M
, dy = δy

∣

∣

M
, dz = δz

∣

∣

M
,

therefore

∂τ

∂x
=
∂L

∂ẋ
=

ẋ

C
√

ẋ2 + ẏ2 + ż2

∂τ

∂y
=
∂L

∂ẏ
=

ẏ

C
√

ẋ2 + ẏ2 + ż2

∂τ

∂z
=
∂L

∂ż
=

ż

C
√

ẋ2 + ẏ2 + ż2































⇒ (∇τ)2 =
ẋ2 + ẏ2 + ż2

C2(ẋ2 + ẏ2 + ż2)
=

1

C2
. (2.4)

Definition. Surfaces in 3D, defined by equation τ = const, are called wave-
fronts.

Wave fronts and rays are mutually orthogonal. Indeed, for τ = const, evidently,
dτ = 0, i.e.

0 =
∂τ

∂x
dx+

∂τ

∂y
dy +

∂τ

∂z
dz = (∇τ, d~r)

where d~r belongs to a tangent plane to the surface τ = const. It follows from here
that gradτ is orthogonal to τ = const, but taking into account (2.4) we get, for
instance,

∂τ

∂x
=

1

C

dx
√

ẋ2 + ẏ2 + ż2dσ
=

1

C

dx

ds

and similarly for ∂τ/∂y and ∂τ/∂z.
Therefore

gradτ ≡ ∂τ

∂x
~i+

∂τ

∂y
~j +

∂τ

∂z
~k′ =

1

C

(

dx

ds
~i+

dy

ds
~j +

dz

ds
~k′
)

=
1

C
~t ,

where ~t is a vector of unit length |~t| = 1 tangent to the ray.

2.5 Solution of the eikonal equation when an ini-
tial wave front is given

In this case, the ray field is formed by rays starting from each point of the surface
τ = τo = const in an orthogonal direction.

If this ray field is regular in some domain, then the solution of the eikonal
equation τ(M) = τ(x, y, z) in this domain reads

τ(M) =

∫ M

Mo

ds

C
+ τ0 ,
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M0

M

τ = τ0 = const

Figure 2.4: The ray field caused by a given initial wave front τ = τ0.

where the integral is a curvilinear integral along that unique ray which starts at
Mo and reaches M .

In a homogeneous medium this procedure coincides with Huygen’s principle.
Each point on a wavefront t = t0 is considered as a secondary source, which

irradiates a spherical wave front that propagates during a time-interval ∆t. An
envelope to these secondary spherical waves describes the position of the wavefront
at the moment t = to + ∆t.



3
Solution of the transport equation

3.1 Ray coordinates

Suppose that the parameter σ along a ray is the eikonal τ , thus

dτ =
ds

C
=

√

ẋ2 + ẏ2 + ż2

C
dσ

and respectively
d

ds
=

d

Cdτ
=

1
√

ẋ2 + ẏ2 + ż2
d

dσ
.

Taking this into account, Euler’s equations for rays can be rewritten in terms
of the new argument τ .

A family of rays in this case depends upon two parameters α, β, say, the angles
of the spherical system of coordinates. So we can present them in the form

~r = ~r(τ, α, β) .

For fixed α and β we have the ray given by the vector function

~r = x(τ, α, β)~i+ y(τ, α, β)~j + z(τ, α, β)~k′

where τ indicates the position of a point on this ray. Now each point M in Ω
can be described by its Cartesian coordinates x, y, z and by appropriate values of
τ, α, β.

Definition. We say that τ, α, β form the ray coordinates in a domain Ω, where
the central ray field is regular.

We can follow the same rationale in developing the ray coordinates if an initial
position of the wave front is given. This time the parameters α and β specify the
position of a point on the initial wave front τ = τo, from which the ray ~r(τ, α, β)

21
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starts in an orthogonal direction to this wave front. As previously, τ specifies the
position of a point on the ray.

In a domain Ω where this ray field is regular τ, α, β form the ray coordinates.
Ray coordinates are formed in 2D by one parameter, say, α and eikonal τ :

~r = ~r(τ, α).
Obviously, instead of τ we can take the arc length s along the ray or even an

arbitrary parameter σ.

3.2 Auxiliary formulas

Functional determinants.
Consider two coordinate systems x, y, z and ξ, υ, ζ:







x = x(ξ, υ, ζ)
y = y(ξ, υ, ζ)
z = z(ξ, υ, ζ)

(3.1)

Let us set the following question: is it possible to solve (3.1) in order to find inverse
functions







ξ = ξ(x, y, z)
υ = υ(x, y, z)
ζ = ζ(x, y, z)

? (3.2)

Assume that x = y = z = 0 corresponds to ξ = υ = ζ = 0, then in a vicinity
of the origin we can present (3.1) approximately as follows

x ' ∂x

∂ξ
ξ +

∂x

∂υ
υ +

∂x

∂ζ
ζ

y ' ∂y

∂ξ
ξ +

∂y

∂υ
υ +

∂y

∂ζ
ζ

z ' ∂z

∂ξ
ξ +

∂z

∂υ
υ +

∂z

∂ζ
ζ .

(3.3)

Definition. The determinant of the system (3.3)

∆ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂ξ

∂x

∂υ

∂x

∂ζ
∂y

∂ξ

∂y

∂υ

∂y

∂ζ
∂z

∂ξ

∂z

∂υ

∂z

∂ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

is called functional determinant and is denoted as follows

∆ =
D(x, y, z)

D(ξ, υ, ζ)
.

We know from linear algebra, that if ∆ = D(x, y, z)/D(ξ, υ, ζ) 6= 0 then the system
of linear equations (3.3) can be solved solely with respect to ξ, υ, ζ.
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Thus, it turns out that the functional determinants regulate the possibility to
solve system (3.1) with respect to ξ, υ, ζ, i.e., to find inverse functions (3.2). Note
that the complete answer to the question is known in mathematics as the theorem
on a function given in implicit form.

Geometrical sense of the functional determinants.
Let us denote by (~a, [~b,~c]) the mixed vector product. We know from vector

algebra, that the absolute value of the mixed product is the volume of the paral-
lelepiped formed by the vectors ~a, ~b and ~c.

Let us present a system of scalar equations (3.1) in vector form ~r = ~r(ξ, υ, ζ).
Obviously, if we fix, for instance, υ, ζ and vary only ξ we shall get a curve in 3D
space: ~r = ~r(ξ, υ0, ζ0), (υ0, ζ0 are fixed), and the differential of this vector function
d~r = (∂~r/∂ξ)dξ is a vector tangent to this curve.

Thus we can construct 3 vectors

dξ~r =
∂~r

∂ξ
dξ =

(

∂x

∂ξ
~i+

∂y

∂ξ
~j +

∂z

∂ξ
~k′
)

dξ

dυ~r =
∂~r

∂υ
dυ =

(

∂x

∂υ
~i+

∂y

∂υ
~j +

∂z

∂υ
~k′
)

dυ

dζ~r =
∂~r

∂ζ
dζ =

(

∂x

∂ζ
~i+

∂y

∂ζ
~j +

∂z

∂ζ
~k′
)

dζ

Now for the element of volume dV in coordinates ξ, υ, ζ we obtain the following
expression

dV = |(dξ~r, [dυ~r, dζ~r])| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂ξ

∂y

∂ξ

∂z

∂ξ
∂x

∂υ

∂y

∂υ

∂z

∂υ
∂x

∂ζ

∂y

∂ζ

∂z

∂ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dξdυdζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂ξ

∂x

∂υ

∂x

∂ζ
∂y

∂ξ

∂y

∂υ

∂y

∂ζ
∂z

∂ξ

∂z

∂υ

∂z

∂ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dξdυdζ =

∣

∣

∣

∣

D(x, y, z)

D(ξ, υ, ζ)

∣

∣

∣

∣

dξdυdζ .

Thus, the functional determinant D(x, y, z)/D(ξ, υ, ζ) appears as a scalar fac-
tor for the element of volume dV in the new coordinate system ξ, υ, ζ. This can
be regarded as the geometrical sense of functional determinants. Note that in the
analysis, such a scalar factor is usually called Jacobian.

Definition of divergence.
Suppose we have a vector field

~A(x, y, z) = A1~i+A2~j +A3~k′, An = An(x, y, z), n = 1, 2, 3.
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Then in the Cartesian coordinates and only in these coordinates we have

div ~A =
∂A1
∂x

+
∂A2
∂y

+
∂A3
∂z

.

The definition of divergence, which does not depend upon a system of coor-
dinates is the following. Consider a small body bounded by a closed surface S.
Denote by ∆V the volume of the body and let ~v be the outgoing unit normal
vector to the surface S. Then, by ( ~A,~v)|s we denote the scalar product of vectors
~A and ~v calculated at points on S. Now the definition of div ~A follows

div ~A = lim
∆V→0

∫ ∫

(S)
( ~A,~v)|sds
∆V

.

The integral over the surface S in the numerator
∫∫

(S)
( ~A,~v)|sds is called the

flux of vector field ~A through the closed surface S.

3.3 Geometrical spreading

Suppose a ray field is given in the form ~r = ~r(τ, α, β), where τ is the eikonal, and
α, β are ray parameters which specify the ray field.

Definition. We say that a set of rays for which the ray parameters α, β vary in
the intervals

α0 ≤ α ≤ α0 + dα , β0 ≤ β ≤ β0 + dβ

forms a ray tube.
Consider a cross section of a ray tube by wave front τ = τ0 and let us evaluate

an area of this cross section d
∑

d
∑

=
∣

∣[dβ~r, dα~r]
∣

∣ =

∣

∣

∣

∣

[

∂~r

∂β
,
∂~r

∂α

]∣

∣

∣

∣

dαdβ ≡ Jdαdβ ,

where

J =

∣

∣

∣

∣

[

∂~r

∂β
,
∂~r

∂α

]∣

∣

∣

∣

is called the spreading of the ray tube, or geometrical spreading.
Geometrical sense of the spreading.
If the ray tube becomes wider J increases. If the ray tube becomes narrower

and rays are focusing, for example, at a certain point J decreases and J = 0
precisely at that point.

Expression for J via the functional determinant.
Consider a piece of the ray tube cut by the wave front τ = τ0 from one side

and by τ = τ0 + dτ from the other side.
For the volume of this part of the ray tube we have the following formula via

the functional determinant

dV =

∣

∣

∣

∣

D(x, y, z)

D(τ, α, β)

∣

∣

∣

∣

dτdαdβ =

∣

∣

∣

∣

D(x, y, z)

D(τ, α, β)

∣

∣

∣

∣

1

C
dsdαdβ
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dΣ

Figure 3.1: Cross section of a ray tube by wave front τ = τ0.

because dτ = ds/C and s is the arc length along the rays.
On the other side, dV = d

∑

ds due to ds being the height of that piece of
the ray tube (note, rays are orthogonal to wave fronts!). Here d

∑

is the area
of the cross section and d

∑

= Jdαdβ in accordance with the definition of the
spreading J . Therefore we finally get

dV = Jdαdβds .

By comparing both expressions with dV we obtain

J =
1

C

∣

∣

∣

∣

D(x, y, z)

D(τ, α, β)

∣

∣

∣

∣

.

Example: An homogeneous medium.
Consider, for the sake of simplicity, a 2D homogeneous medium and a point

source. In this case the rays are straight lines, the wave fronts τ = const are
circles. Let the ray parameter α be the angle of the polar coordinate system. By ρ
we denote the radius of the curvature of the wave front τ = τo.

Then, bearing geometry in mind, for an arbitrary wave front τ = τ1, τ1 > τo,
we obtain

d
∑

d
∑

0

≡ Jdα

J0dα
=

[ρ+ C(τ1 − τ0)]dα
ρdα

=
ρ+ C(τ1 − τ0)

ρ

due to τ = s/C + const, where s is the arc length of the rays.
It follows from the above that the following formula for the spreading J(τ) as

a function of τ holds true

J(τ) = J(τ0)
ρ+ C(τ − τ0)

ρ
.

Similar calculations can be carried out in a 3D homogeneous medium. A final
result in the case reads

J(τ) = J(τ0)
[ρ1 + C(τ − τ0)][ρ2 + C(τ − τ0)]

ρ1ρ2
,

where ρ1 and ρ2 are the main radii of the curvature of the initial wave front τ = τo.
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3.4 Solution of transport equations

Consider first the transport equation for the main amplitude A0

2(∇τ,∇A0) +A0∆τ = 0 .

This is a partial differential equation, but it can be presented as an ordinary
differential equation along a ray. To this end, we have to recollect a definition of
the derivative along a given curve. Let

x = x(s), y = y(s), z = z(s)

be a curve in 3D (or we can simply imagine a ray) and consider a function f =
f(x, y, z). Derivative along the curve is defined by the formula

df

ds
=
∂f

∂x

dx

ds
+
∂f

∂y

dy

ds
+
∂f

∂z

dz

ds
= (∇f,~t) ,

where ~t is a unit vector tangent to the curve.
Now we have to take into account that ∇τ = ~t/C, where ~t is a unit tangent

vector to a ray, therefore

(∇τ,∇A0) =

(

∇A0,
~t

C

)

=
1

C
(∇A0,~t) =

1

C

dA0
ds

.

Instead of s, we can use the eikonal τ as a parameter along the ray. In this
case we get

ds = Cdτ → d

ds
=

1

C

d

dτ
and therefore

(∇τ,∇A0) =
1

C

dA0
ds

=
1

C2
dA0
dτ

.

Thus, finally we obtain

2(∇τ,∇A0) +A0∆τ =
2

C2
dA0
dτ

+A0∆τ = 0

which is a first order ordinary differential equation along the ray.
Subsequently, we have to calculate ∆τ on the ray.
We know that ∆τ = div grad τ . So this time the vector field is formed by

grad τ = ~t/C. Then, we take a small body ∆V made of a piece of a ray tube and
denote by ~ν the external normal vector of unit length to the surface S of the body.
Apparently, on the lateral surface of the ray tube ~ν ⊥ ~t and therefore

( ~A, ~ν) =
1

C
(~t, ~ν) = 0 .

On the low bottom ~ν ↑↓ ~t and ( ~A, ~ν) = − 1

C
while on the top section of the ray

tube

( ~A, ~ν) =
1

C
(~t, ~ν) =

1

C
.
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dΣτ0

~v

τ = τ0
τ = τ0 + dτ

dΣτ0+dτ

Figure 3.2: Calculation of ∆τ . A piece of a ray tube cut by two close wave fronts.

Hence,

∫∫

(S)

( ~A, ~ν)|s dS ' −
1

C
d
∑

τ +
1

C
d
∑

τ+dτ =

(

1

C
J

∣

∣

∣

∣

τ+dτ

− 1

C
J

∣

∣

∣

∣

τ

)

dαdβ .

Then, for the element of volume dV we have

dV =

∣

∣

∣

∣

D(x, y, z)

D(τ, α, β)

∣

∣

∣

∣

dτdαdβ = CJdτdαdβ

and therefore

∆τ = lim
∆V→0

(

1

C
J |τ+dτ −

1

C
J |τ
)

CJdτ
=

1

CJ

d

dτ

(

J

C

)

.

Thus, finally we arrive at the following expression

2(∇τ,∇A0) +A0∆τ = 0⇒ 2

C2
dA0
dτ

+
A0
CJ

d

dτ

(

J

C

)

= 0 .

The solution of this ordinary differential equation reads

dA0
A0

= −1

2

1

J/C
d(J/C)→ d lnA0 =

= −1

2
d ln(J/C)→ lnA0 = −1

2
ln(J/C) + ln const→ A0 =

const
√

1

C
J

.

We present the general solution of the transport equation for the main ampli-
tude A0 of the ray series in the following form

A0 =
ψ0(α, β)
√

1

C
J

,
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where ψo(α, β) is a constant of integration with respect to τ , so it may only depend
upon α, β !

The transport equations of a higher order read

2(∇τ,∇An+1) +An+1∆τ = ∆An , n = −1, 0, 1 · · · ; A−1 ≡ 0,

and can be presented in the form

2

C2
dAn+1

dτ
+
An+1

CJ

d

dτ

(

J

C

)

= ∆An ,

and
dAn+1

dτ
+An+1

1

2

1

J/C

d

dτ
(J/C) =

C2

2
∆An. (3.4)

The general solution reads

An+1 =

√

C

J

(

ψn+1(α, β) +

∫ τ

τ0

C2

2

√

J

C
∆Andτ

)

. (3.5)

Explanations to formula(3.5). We have already got the general solution of the
homogeneous equation (3.4). Indeed, it is

Ãn+1 =
const
√

1

C
J

≡ ψn+1(α, β)
√

1

C
J

.

Now we have to find an arbitrary solution for the inhomogeneous equation (3.4)
(i.e. with non zero right-hand side) in order to develop the general solution of this
equation. To this end let us seek it in the form

˜̃An+1 = U(τ)Ãn+1(τ) ,

where U(τ) is an unknown function.
By inserting the latter formula in (3.4) we obtain

Ãn+1
dU

dτ
+ U

dÃn+1

dτ
+ UÃn+1

1

2

d

dτ
(J/C) =

C2

2
∆An .

Due to Ãn+1 satisfying the homogeneous equation (and therefore canceling the
two last terms on the left-hand side of the latter equation) we obtain for U the
following result:

Ãn+1
dU

dτ
=
C2

2
∆An → U =

∫ τ

τ0

Ã−1
n+1

C2

2
∆Andτ .

This solution satisfies the following initial condition U(τo) = 0. But we have to
get any solution, therefore we may take this one with const ≡ ψn+1(α, β) = 1 in
the expression for Ãn+1. The general solution then will take the form of (3.5).
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Remark. The main problem in computation of A1 is caused by the term

∆A0 = ∆
ψ0(α, β)
√

1

C
J

,

under the integral in equation (3.5) for n=0.
In the numerical computations we face the problem of finding the second deriva-

tives of the geometrical spreading on the ray under consideration.
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4
Energy relations in the ray theory

(in the wave equation
perspective). Caustic problems of

the ray method

4.1 On propagation of energy along ray tubes

We consider the wave equation

1

C2
∂2W

∂t2
−∆W = 0

and, within zero-order approximation of the ray method, have its approximate
solution in the form

W = e−iω(t−τ)A0 .

The wave field density of energy ρE for the wave equation is defined by the formula

ρE =
1

2

(

1

C2
|Wt|2 + |∇W |2

)

.

Consider a ray tube

α0 ≤ α ≤ α0 + dα , β0 ≤ β ≤ β0 + dβ

and its elementary volume cut by the wave fronts τ = τ0 and τ = τ0 + dτ at a
moment t = t0. Let us calculate its position at a moment t > t0.

Obviously, the equation of a wave front in the time domain is t − τ = const.
So, if at the moment t0 we have t0 − τ0 = const, then at the moment t we get
t− τ = t0 − τ0 and therefore τ = τ0 + t− t0.
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Respectively, if t0 − (τ0 + dτ) = const at t = t0, then for this wave front we
have t− τ = t0 − (τ0 + dτ) and consequently τ = τ0 + dτ + t− t0 at the moment
t = t. Denote these volumes by dVt0 and dVt, respectively.

By calculating the energy of the wave field in these volumes in the main ap-
proximation we have

|Wt|2 = | − iωe−iω(t−τ)A0|2 = ω2|A0|2 ,
|∇W |2 = |+ iωe−iω(t−τ)A0∇τ + e−iω(t−τ)∇A0|2 ' ω2(∇τ)2|A0|2

=
ω2

C2
|A0|2

and therefore for the density of the energy we obtain the following approximate
formula

ρE '
ω2

C2
|A0|2 .

Hence, by taking into account that dE = ρEdV , we obtain

dE|t0 ∼=
ω2

C2(M0)

|A0(M0)|2dVt0 =
ω2

C2(M0)

|A0(M0)|2CM0
JM0

dτdαdβ ,

where all terms on the right-hand side are calculated at a point Mo in the elemen-
tary volume dVto .

Respectively, we obtain at the moment t at the corresponding point M in dVt

dE
∣

∣

t
=

ω2

C2(M)

|A0(M)|2CMJMdτdαdβ .

By substituting the expression for the amplitude A0, we obtain

dE
∣

∣

t0
' ω2

C2(M0)

|ψ0(α, β)|2
1

C(M0)
J(M0)

C(M0)J(M0)dτdαdβ

and

dE|t '
ω2

C2(M)

|ψ0(α, β)|2
1

C(M)
J(M)

C(M)J(M)dτdαdβ

and therefore

dE|t0 = dE|t = ω2|ψ0(α,β)|2dτdαdβ .

Note that the function ψ0(α,β) is constant along the rays with the possibility
of varying only from one ray to another.

The latter result demonstrates the following well known statement in the ray
theory: the energy of the wave field in the zero order ray approximation propagates
along ray tubes and it has no transversal diffusion across the ray tubes.
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4.2 Energy relations for the wave equation and
the vector of energy flow. Law of energy con-
servation

Consider first, for the sake of simplicity, the 1D wave equation

1

C2
∂2W

∂t2
− ∂2W

∂x2
= 0

and assume that W is a real solution of this equation, then for the density of
energy ρE we have by definition

ρE =
1

2

1

C2

(

∂W

∂t

)2

+
1

2

(

∂W

∂x

)2

.

By differentiating ρE with respect to time t we obtain

∂ρE
∂t

=
1

C2
∂W

∂t

∂2W

∂t2
+
∂W

∂x

∂2W

∂x∂t
.

Further, after multiplying the wave equation by ∂W/∂t we can develop it as
follows

1

C2
∂W

∂t

∂2W

∂t2
− ∂W

∂t

∂2W

∂x2
=

=
1

C2
∂W

∂t

∂2W

∂t2
+
∂W

∂x

∂2W

∂x∂t
− ∂W

∂x

∂2W

∂x∂t
− ∂W

∂t

∂2W

∂x2
=

=
∂ρE
∂t
− ∂

∂x

(

∂W

∂t

∂W

∂x

)

= 0 .

Apparently, for 3D we have

ρE =
1

2

1

C2

(

∂W

∂t

)2

+
1

2
(∇W,∇W )

and get

∂ρE
∂t
− ∂

∂x

(

∂W

∂t

∂W

∂x

)

− ∂

∂y

(

∂W

∂t

∂W

∂y

)

− ∂

∂z

(

∂W

∂t

∂W

∂z

)

=
∂ρE
∂t

+ div ~S = 0 ,

where by vector ~S we denote

~S = −∂W
∂t

grad W .

Definition. ~S is called the vector of energy flow.
Thus, from the wave equation

1

C2
∂2W

∂t2
−∆W = 0
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~S

~v
σ

V

Figure 4.1: Vector of energy flow ~S and the law of energy conservation in a volume
V bounded by a closed surface σ.

we deduce the following result

∂ρE
∂t

+ div ~S = 0 .

Let us take a body of volume V bounded by a closed surface σ, and integrate
both sides of the latter equation over it:

∫∫∫

V

∂ρE
∂t

dV +

∫∫∫

V

div ~S dV =
∂

∂t

∫∫∫

V

ρEdV +

∫∫∫

V

div ~S dV = 0 .

Now we have to use the following auxiliary formula (Gauss-Ostrogradskii)

∫∫∫

V

div ~S dV =

∫∫

σ

(~S, ~ν)|σdσ ,

where ~ν is the unit vector of the outgoing normal to the surface σ and dσ is the
element of area on σ.

Then we finally obtain

∂

∂t

∫∫∫

V

ρEdV = −
∫∫

σ

(~S, ~ν)|σdσ .

The expression on the left-hand side of the latter equation describes the energy
variation in the volume V for a unit interval of time, while on the right-hand side
we have the total energy flow through a closed surface σ which bounds the volume.
It follows from the equation that the increase (or decrease) of energy inside the
volume is caused by the total flow of energy through the surface of the volume.
This statement is known as the law of energy conservation.



Caustic problems in the ray theory 35

In frames of the zero order approximation of the ray method we have for a real
approximate solution W of the wave equation

W ' A0 cosω(t− τ) ,
∂W

∂t
' −ωA0 sinω(t− τ) ,

∇W ' +ωA0∇τ sinω(t− τ)

and therefore

~S = −∂W
∂t

grad W ' ω2A20 sin2 ω(t− τ)gradτ =
ω2A20
C

sin2 ω(t− τ)~t ,

where ~t is the unit vector tangent to a ray. Thus, the direction of the energy
flow vector coincides with the direction of the propagation of rays. It illuminates
the important conception of rays of high-frequency approximation in the theory
of wave propagation.

4.3 Caustic problems in the ray theory

The ray method solution in zero order approximation in the frequency domain
reads

U = eiωτA0 = eiωτ
ψ0(α,β)
√

1

C
J

,

and for the geometrical spreading J we have the following formulas

J =
1

C

∣

∣

∣

∣

D(x, y, z)

D(τ, α, β)

∣

∣

∣

∣

=
1

C
|(~rτ , [~rα~rβ ])|

which are convenient, if a family of rays is given in the form

~r = ~r(τ, α, β) .

Definition. A geometrical object in which at each point the geometrical spread-
ing J vanishes is called caustic.

Thus, the amplitude A0 gets singular on caustics, while the real wave field
remains to be finite on the caustics. This means that the ray method does not
properly describe the real wave field in a vicinity of caustics. This is precisely
what we call caustic problems in the ray theory.

Point source. Suppose the corresponding family of rays is given in the form

~r = ~r(τ, α, β) .

For each ray of the family we have

~r
∣

∣

τ=0
= ~rA ,
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τ2
∂~r

∂τ

τ1

Figure 4.2: On a caustic surface eikonal τ becomes a function of the ray parameters
α, β; τ1 and τ2 are the eikonals of incident and outgoing rays, respectively.

where ~rA denotes the position of the source. By differentiating the latter formula
with respect to the ray parameters α and β we get

~rα
∣

∣

τ=0
= ~rβ

∣

∣

τ=0
= 0

and therefore J = 0 at the point source. Hence, in general the ray method is not
valid in a vicinity of a point source! There are few exceptions of the ray formula
coinciding with the exact solution.

Caustic surface. Assume now that the family of rays ~r = ~r(τ, α, β) in 3D has
an envelope surface. It implies that each ray of the family, specified by the ray
parameters α and β, touches the envelope surface at a point which corresponds
to a certain value of the eikonal τ . Obviously, this value of τ varies from ray to
ray and therefore on the surface the eikonal τ is a function of the ray parameters,
i.e. τ = τ(α, β). By inserting this function into the equation of rays we obtain the
vectorial equation of the envelope surface in the following form:

~r = ~r(τ(α,β), α, β) .

It is clear now that the three vectors

∂~r

∂τ
;

d~r

dα
=
∂~r

∂τ

∂τ

∂α
+
∂~r

∂α
;

d~r

dβ
=
∂~r

∂τ

∂τ

∂β
+
∂~r

∂β

are located on a tangent plane to the envelope surface and therefore their mixed
product vanishes, i.e.

(

∂~r

∂τ
,

[

d~r

dβ
,
d~r

dα

])

= 0 .

Note that the vector ∂~r/∂τ is tangent to the ray and therefore it is tangent to
the envelope, while the two others belong to a tangent plane to the envelope by
definition.
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The left-hand side of the latter equation can be developed as follows

(

~rτ ,

[

~rτ
∂τ

∂β
+ ~rβ , ~rτ

∂τ

∂α
+ ~rα

])

=

=

(

~rτ , [~rτ , ~rτ ]
∂τ

∂β

∂τ

∂α
+ [~rτ , ~rα]

∂τ

∂β
+ [~rβ , ~rτ ]

∂τ

∂α
+ [~rβ , ~rα]

)

=

=
∂τ

∂β
(~rτ , [~rτ~rα]) +

∂τ

∂α
(~rτ , [~rβ , ~rτ ]) + (~rτ [~rβ , ~rα]) =

(

~rτ , [~rβ , ~rα]
)

due to three other mixed products being identically equal to zero.
It follows immediately from here that J = 0 at any point of the envelope surface

and therefore the ray method is not valid in its vicinity.
Quite often an envelope of a family of rays is called caustic. Our definition is

then more extended, but there is no contradiction between them.
2D case. Now we have x = x(τ, α); y = y(τ, α) or in vector form ~r = ~r(τ, α).
Then,

∣

∣

∣

∣

D(x, y)

D(τ, α)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

xτ , yτ
xα, yα

∣

∣

∣

∣

∣

∣

∣

∣

=
∣

∣[~rτ , ~rα]
∣

∣ .

Let α specify a point on an envelope line of a family of rays, and τ as usual
specifies a point on a ray. It is clear that vectors ~rτ and ~rα are tangent to the
envelope line and therefore at each point of the envelope we have

[~rτ , ~rα] = 0⇒ J = 0 .

Several methods have been suggested and developed in order to overcome the
caustic problems of the ray theory. Historically the first one is known now as the
method of wave catastrophes used in the wave propagation and scattering theory
rather than in Geophysics. In Geophysics it is called the modified ray method.

To illustrate the main ideas of the method let us consider a smooth branch of
a caustic (simple caustic!). Denote by τ1 the eikonal of the incident rays and by
τ2 the eikonal of the outgoing rays to the caustic, see Fig. 4.2. It can be proved
that in a vicinity of the caustic, they can be presented in the form

τ1 = ξ − 2

3
µ3/2 , τ2 = ξ +

2

3
µ3/2

where ξ = ξ(x, y, z) and µ = µ(x, y, z) are regular functions (they have no singu-
larities near the caustic!) Obviously, τ1 = τ2 exactly on the caustic and therefore
µ = 0 on it.

A wave field W in a vicinity of the caustic is constructed in the form of an
asymptotic series with respect to the large frequency ω

W = eiωξ
{[

Ao(x, y, z) +
A1(x, y, z)

−iω + . . .

]

v(−ω3/2µ)+

+ i

[

Bo(x, y, z) +
B1(x, y, z)

−iω + . . .

]

v′(−ω3/2µ)
w1/3

}

(4.1)
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where v(t) is an Airy function
(

v(t) =
√
πAi(t) and v′(t) = dv/dt

)

. Regular
functions Ak, Bk, k = 0, 1, 2, . . . have to be found by inserting the series into the
reduced wave equation (compare with the ray method). The asymptotic expansion
(4.1) was first suggested and developed by Kravtsov (1964) and by Ludwig (1966).

Remark. The Airy function v(t) satisfies the following equation

v
′′ − tv = 0

and can be presented by the integral

v(t) =
1√
π

∫ ∞

O

cos

(

ty +
y3

3

)

dy .

The asymptotic behavior of v(t) is the following.
For a large and positive t we have

v(t) ' 1

2
t−1/4 exp

(

−2

3
t3/2

)

as t→ +∞ , (4.2)

while for a negative t, it oscillates

v(−t) ' t−1/4 sin
(

2

3
t3/2 +

π

4

)

as t→ +∞ . (4.3)

It follows from here that for a positive large µ (it means the point of observation
is far from the caustic but on the light-side of it!) v can be replaced by its
asymptotic (4.3), resulting in two ray series for the incident and outgoing rays.
On the contrary, for µ < 0 and |µ| → +∞ when the point of observation is located
in the caustic shadow the wave field (4.1) exponentially decreases according to the
asymptotics (4.2).

Thus, the asymptotic series (4.1) allows the development of an approximate
solution of the reduced wave equation, which has no singularity on the caustic.
But to this end we have to know what kind of special function has to be involved in
the asymptotic series (the Airy function corresponds only to a simple caustic and,
actually, it is the simplest function among the functions of wave catastrophes).

In the mid 1960s another method was proposed and developed by Maslov
which is now known as Maslov’s method - see Maslov (1965), Maslov and Fe-
doryuk (1976). In fact, this method provides a regular procedure for choosing
a particular function of wave catastrophes, which corresponds to the particular
geometrical structure of the caustic, and gives an expression for the wave field in
terms of manifold integral. The method requires a good knowledge of Hamiltonian
mechanics and does not seem to be easy for application. Presently, there are many
papers in theoretical geophysics dealing with Maslov’s method.

In the beginning of the 1980s, Popov proposed a new method for the compu-
tations of wave field in high-frequency approximation which is now known as the
Gaussian Beam method - see Popov (1981,1982). This method provides a uniform
computational algorithm which does not depend on a particular structure of the
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caustic. It does not require any special function to be used in the computations.
This method will be discussed later in Chapters 8 and 9.

For more details concerning these methods and comparisons among them see
the review paper by Babich and Popov (1989).

4.4 On the computational algorithm of the ray
theory

We start with the scalar wave equation

1

C2
∂2W

∂t2
−∆W = 0

and construct approximate solutions in the form of ray series

W ∼ e−iω(t−τ)
∞
∑

n=0

An

(−iω)n ,

where the eikonal τ satisfies the eikonal equation (∇τ,∇τ) = 1/C2 and for the
main amplitude A0 we get the transport equation

2(∇τ,∇A0) +A0∆τ = 0 .

What kind of computations should be carried out in order to apply it to geo-
physical problems?

Firstly, we have to construct rays, i.e. to solve Euler’s equations for Fermat’s
functional.

This is a system of ordinary differential equations and apart from a few par-
ticular cases it can be solved only numerically. Then we have to find the eikonal
(or travel time) by integrating along these rays

τ = τ0 +

∫

ds

C
.

Here we face the so-called two point problem:
How can that ray which connects a source and a point of observation be found?
In order to solve the problem we can use, for example, the trial and error

method, which is a time consuming procedure.
The next step consists in the computation of the amplitude A0, i.e., the geo-

metrical spreading J due to

A0 =
ψ0(α, β)
√

1

C
J

.

For J we have different analytical expressions:

J =
1

C

∣

∣

∣

∣

D(x, y, z)

D(τ, α, β)

∣

∣

∣

∣

=
1

C
|(~rτ , [~rα, ~rβ ])| .
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If we take into account that

~rτ =
d~r

dτ
=
d~r

ds

ds

dτ
= C

d~r

ds

and that the vector d~r/ds is orthogonal to ~rα and ~rβ and has unit length, we also
get

J =
∣

∣[~rα, ~rβ ]
∣

∣ .

Obviously, to compute J we have to know the vectors ~rα and ~rβ as functions
of τ or s.

One of the old but direct approaches to the problem consists in estimating the
area of the cross section of a ray tube (in 2D it is the distance between two close
rays). But normally, this problem requires special algorithms.

All these computations may fail, if the observation point is situated on a caustic
or in a vicinity of a caustic. In that case the ray method itself requires improve-
ments.

Note: there are a number of papers in theoretical geophysics in which the
eikonal and the transport equations are treated as partial differential equations
and finite difference methods are applied to them.



5
The paraxial ray theory

The main aim of this chapter is to study the eikonal and the amplitude of a ray
series in the vicinity of a given ray, i.e., in a ray tube.

5.1 Ray centered coordinates

Assume, we have a given ray in the form

~r = ~ro(s) = x(s)~i+ y(s)~j + z(s)~k

where s is the arc length of the ray.
Let us introduce two mutually orthogonal unit vectors ~e1(s) and ~e2(s) which

at any point s belong to the plane orthogonal to this ray. We subject them to the
following differential equations as functions of s

~t

~r0(s)

M

~e1

~e2

Figure 5.1: The ray centered coordinates in the vicinity of a ray ~ro(s).

41
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d~e1
ds

= κ1(s)~t(s) ,
d~e2
ds

= κ2(s)~t(s) ,

where ~t = d~ro/ds is a unit vector tangent to the ray ~ro(s) and the functions κ1(s)
and κ2(s) are so far unknown. We shall fix them later.

Then, in the vicinity of this ray we can introduce local coordinates s, q1, q2
through the formula

~rM = ~r0(s) + q1~e1(s) + q2~e2(s) ,

where ~rM is the radius-vector of a point M in a vicinity of a given ray ~ro(s).
Let us calculate the element of length dS in this coordinate system. According

to the definition
dS2 = (d~rM , d~rM )

and

d~rM =
d~r0(s)

ds
ds+ dq1~e1(s) + dq2~e2(s) + q1

d~e1
ds

ds+ q2
d~e2
ds

ds =

= ~t(1 + q1κ1 + q2κ2)ds+ ~e1dq1 + ~e2dq2 .

Hence,

dS2 = h2ds2 + dq21 + dq22 , h = 1 + κ1(s)q1 + κ2(s)q2 .

This coordinate system is regular and orthogonal in some vicinity of the central
ray ~r0(s). The latter fact follows from the expression for dS2.

Now we can describe the rays which form a ray tube around this central ray
~r0(s) by the following equations

q1 = q1(s) and q2 = q2(s) ,

where functions q1(s), q2(s) have to satisfy Euler’s equations.

5.2 Euler’s equations in Hamiltonian form

We can now present Fermat’s functional T in the following form

T =

∫ (B)

(A)

ds

C
=

∫ (B)

(A)

√

h2 + q̇21 + q̇22
C(s, q1, q2)

ds ,

where q̇i = dqi/ds, i = 1, 2, and velocity C is supposed to be a function of s, q1,
q2.

In order to write Euler’s equations in Hamiltonian form we need to introduce
the slownesses p1, p2 with the formulas

pi =
1

C

∂

∂q̇i

√

h2 + q̇21 + q̇22 =
1

C

q̇i
√

h2 + q̇21 + q̇22
, i = 1, 2. (5.1)
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Now we have to solve (5.1) with respect to q̇i, i = 1, 2. It follows from (5.1)
that

q̇21(1− C2p21)− q̇22C2p21 = C2p21h
2 ,

−q̇21C2p22 + q̇22(1− C2p22) = C2p22h
2 .

Suppose that the determinant of this linear system is not equal to zero, i.e.,

∆ = 1− C2(p21 + p22) 6= 0 ,

then the unique solution reads

q̇21 =
C2p21
∆

h2 → q̇1 =
Cp1h√

∆
,

q̇22 =
C2p22
∆

h2 → q̇2 =
Cp2h√

∆
.

For a Hamiltonian function H we get

H =

(

2
∑

i=1

piq̇i − L
)∣

∣

∣

∣

∣

q̇i=q̇i(p1,p2)

=

=
Ch√
∆

(

p21 + p22
)

− 1

C

√

h2 +
C2h2

∆

(

p21 + p22
)

=

=
Ch√
∆

(

p21 + p22
)

− h

C
√
∆

√

1− C2
(

p21 + p22
)

+ C2
(

p21 + p22
)

=

= − h

C
√
∆

(

1− C2(p21 + p22)
)

= − h
C

√

1− C2
(

p21 + p22
)

.

Fermat’s integral in Hamiltonian form now reads

T =

∫ (B)

(A)

ds

C
=

∫ (B)

(A)

p1dq1 + p2dq2 −H(s, q1, q2, p1, p2)ds

and Hamiltonian equations have the form

d

ds
qi =

∂H

∂pi
,

d

ds
pi = −

∂H

∂qi
, i = 1, 2 . (5.2)

Note: the functions κi(s), i = 1, 2, involved in the coordinate system s, q1, q2
are not fixed yet. In order to fix them we have to take into account that ~r0(s) is a
ray. That means, on one hand, that its equations in the ray centered coordinates
are the following

q1(s) = 0 , q2(s) = 0 (5.3)

for an arbitrary s. By differentiating them on s we get q̇1(s) = 0, q̇2(s) = 0 and
therefore p1(s) = 0, p2(s) = 0.
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On the other hand, being a ray, ~r0(s) has to satisfy Euler’s equations and
therefore the functions

q1(s) = q2(s) = 0 and p1(s) = p2(s) = 0

are solutions of Hamiltonian equations (5.2). By inserting them into equations
(5.2) we conclude that the following formulas hold true along the central ray

∂H

∂qj

∣

∣

∣

∣

qi=0,pi=0

= 0,
∂H

∂pj

∣

∣

∣

∣

qi=0,pi=0

= 0, j = 1, 2 . (5.4)

By inserting expression for H into (5.4) we obtain

∂H

∂qj

∣

∣

∣

∣

qi=0,pi=0

= −
(

1

C

∂h

∂qj

)∣

∣

∣

∣

qi=0

+

(

h

C2
∂C

∂qj

)∣

∣

∣

∣

qi=0

−

−









h

C

−(p21 + p22)C
∂C

∂qj
√

1− C2(p21 + p22)









∣

∣

∣

∣

∣

∣

∣

∣

qi=0,pi=0

=

− 1

C(s, 0, 0)
κj(s) +

1

C2(s, 0, 0)

∂C

∂qj

∣

∣

∣

∣

q1=q2=0

= 0, j = 1, 2

and therefore

κj(s) =
1

C(s, 0, 0)

∂C

∂qj

∣

∣

∣

∣

q1=q2=0

, j = 1, 2. (5.5)

Thus, functions κ1 and κ2 are fixed now by equations (5.5).
Remark1. Connections between Frenet’s formulas and the ray centered coor-

dinates.
Suppose we have an arbitrary smooth curve in 3D in the form ~r = ~r(s) with

s being the arc length of the curve. We can introduce three unit and mutually
orthogonal vectors ~t, ~n, ~b, where ~t = d~r/ds is a tangent vector to the curve, ~n is a

vector of the main normal to the curve and ~b = [~t, ~n] is a vector of the binormal
to the curve.

For derivatives of these vectors with respect to s the following Frenet’s formulas
hold

d~t

ds
= K~n ,

d~n

ds
= T~b−K~t , d~b

ds
= −T~n , (5.6)

whereK = K(s) is the curvature of the curve and T = T (s) is its torsion. Based on
these vectors we can introduce other local coordinates, say, s, n, b by the formula

~rM = ~r0(s) + n ~n(s) + b~b(s) . (5.7)

Assume now that the smooth curve is a ray. With the formula (5.7) we then
obtain new coordinates in the vicinity of the ray, but unlike the ray centered
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coordinates s, q1, q2 this coordinate system will not be orthogonal! Indeed, we get
from (5.7)

d~rM = ~tds+ ~n(s)dn+~b(s)db+ n
d~n

ds
ds+ b

d~b

ds
ds =

= ds[~t+ n(T~b−K~t) + b(−T~n)] + ~n(s)dn+~b(s)db

and further

dS2 = (d~rM , d~rM ) = (1− nK)2ds2 + (nTds+ db)2 + (dn− bTds)2 =
[

(1− nK)2 + n2T 2 + b2T 2
]

ds2 + db2 + dn2 + 2nTdsdb− 2bTdnds .

Because of the presence of the two last terms in this formula the coordinates
s,n,b are not orthogonal in the vicinity of the central ray, simply per definition.
But a non-orthogonal system is much less convenient for theoretical investigations.

We have introduced two other unit and mutually orthogonal vectors ~e1(s),
~e2(s) on the normal plane to the central ray ~r0(s). Let us find the connection

between them and ~n(s), ~b(s).
Introduce

θ(s) =

∫ s

s0

T (s)ds+ θ0 ,

where T (s) is the torsion of the ray, and then consider

~e1(s) = ~n(s) cos θ(s)−~b(s) sin θ(s) ,
~e2(s) = ~n(s) sin θ(s) +~b(s) cos θ(s) .

(5.8)

By differentiating the equations (5.8) with respect to s and taking into account
Frenet’s formulas (5.6) we obtain

d~e1
ds

= −~n sin θ T + cos θ
d~n

ds
−~b cos θ T − sin θ

d~b

ds
=

= −~n sin θ T + cos θ(T~b−K~t)−~b cos θ T + sin θ T~n = −K~t cos θ

and, respectively,
d~e2
ds

= −K sin θ ~t .

It follows from the latter formulas that derivatives of ~e1 and ~e2 have nonzero
projections only on vector ~t. This means precisely that during propagation along
the central ray, both vectors ~e1, ~e2 do not rotate unlike vectors ~n and ~b!

By comparing the latter formulas with equations (5.5) we arrive at the following
result

κ1(s) =
1

C

∂C

∂q1

∣

∣

∣

∣

q1=q2=0

= −K(s) cos θ(s) ,

κ2(s) =
1

C

∂C

∂q2

∣

∣

∣

∣

q1=q2=0

= −K(s) sin θ(s) ,

(5.9)
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which hold true along the ray. For example, the curvature of the ray depends upon
velocity and its derivatives as follows

K2(s) =

[

(

1

C

∂C

∂q1

)2

+

(

1

C

∂C

∂q2

)2
]

q1=q2=0

.

5.3 Equations in variations

Consider now rays which form a ray tube centered on the ray ~r0(s). They should
be close to it and therefore q1, q2 along with p1 and p2 have to be small. Hence,
we can simplify Hamiltonian equations (5.2) just by saving only the linear terms
in decomposition its right-hand sides in power series on q and p. To this end let
us expand H by using Taylor series.

We have, obviously,

√

1− C2(p21 + p22) = 1− 1

2
C20 (p

2
1 + p22) + . . . ,

and

1

C
=

1

C0
− 1

C20

∂C

∂q1

∣

∣

∣

∣

q1=q2=0

q1 −
1

C20

∂C

∂q2

∣

∣

∣

∣

q1=q2=0

q2 +

1

2

∂2C−1

∂q21

∣

∣

∣

∣

q1=q2=0

q21 +
∂2C−1

∂q1∂q2

∣

∣

∣

∣

q1=q2=0

q1q2 +
1

2

∂2C−1

∂q22

∣

∣

∣

∣

q1=q2=0

q22 + . . . ,

where by Co we denote velocity C computed on the central ray ~ro(s), i.e., Co ≡
C|q1=q2=0 = Co(s).

Then,

H = − h
C

√

1− C2(p21 + p22) =

= −(1 + κ1q1 + κ2q2)

(

1− 1

2
C20 (p

2
1 + p22) + · · ·

)(

1

C0
− 1

C0
κ1q1 −

1

C0
κ2q2+

+
1

2

∂2C−1

∂q21

∣

∣

∣

∣

q1=q2=0

q21 +
∂2C−1

∂q1∂2

∣

∣

∣

∣

q1=q2=0

q1q2 +
1

2

∂2C−1

∂q22

∣

∣

∣

∣

q1=q2=0

q22 + · · ·
)

=

= − 1

C0
+

1

2
C0(p

2
1 + p22) +

1

C0
(κ1q1 + κ2q2)

2−

− 1

2

(

∂2C−1

∂q21

∣

∣

∣

∣

q1=q2=0

q21 + 2
∂2C−1

∂q1∂2

∣

∣

∣

∣

q1=q2=0

q1q2 +
∂2C−1

∂q22

∣

∣

∣

∣

q1=q2=0

q22

)

+ · · ·
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Now we have to develop second derivatives of C−1 with respect to q1 and q2:

∂C−1

∂q1
= −1C−2 ∂C

∂q1
,

∂2C−1

∂q21
= 2C−3

(

∂C

∂q1

)2

− C−2 ∂
2C

∂q21
⇒

∂2C−1

∂q21

∣

∣

∣

∣

q1=q2=0

=
2

C0
κ21 −

1

C20

∂2C

∂q21

∣

∣

∣

∣

q1=q2=0

.

Accordingly,

∂2C−1

∂q22

∣

∣

∣

∣

q1=q2=0

=
2

C0
κ22 −

1

C20

∂2C

∂q22

∣

∣

∣

∣

q1=q2=0

and

∂2C−1

∂q1∂q2

∣

∣

∣

∣

q1=q2=0

= 2C−3
0

∂C

∂q1

∂C

∂q2

∣

∣

∣

∣

q1=q2=0

− 1

C20

∂2C

∂q1∂q2

∣

∣

∣

∣

q1=q2=0

=

=
2

C0
κ1κ2 −

1

C20

∂2C

∂q1q2

∣

∣

∣

∣

q1=q2=0

.

By taking it into account, we obtain

H =− 1

C0
+
C0
2

(p21 + p22)+

+
1

2C0

(

∂2C

∂q21

∣

∣

∣

∣

q1=q2=0

q21 + 2
∂2C

∂q1∂q2

∣

∣

∣

∣

q1=q2=0

q1q2 +
∂2C

∂q22

∣

∣

∣

∣

q1=q2=0

q22

)

+

+ · · · = H0 +H2 + · · · ,

where H0 = −1/C0 and H2 is the second order polynomial on q1, q2, p1, p2.

Thus, for the rays from a ray tube we obtain a linear system of ordinary
differential equations

d

ds
qi =

∂H2
∂pi

,
d

ds
pi = −

∂H2
∂qi

, i = 1, 2. (5.10)

This system is called the equations in variations for the initial Hamiltonian
system (5.2). By taking into account the expression for H2 we ultimately get

d

ds
q1 = C0p1 ,

d

ds
p1 = − 1

C20

∂2C

∂q21

∣

∣

∣

∣

q1=q2=0

q1 −
1

C20

∂2C

∂q1∂q2

∣

∣

∣

∣

q1=q2=0

q2 ,

d

ds
q2 = C0p2 ,

d

ds
p2 = − 1

C20

∂2C

∂q1∂q2

∣

∣

∣

∣

q1=q2=0

q1 −
1

C20

∂2C

∂q22

∣

∣

∣

∣

q1=q2=0

q2 .

(5.11)
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5.4 Properties of the solutions of the equations in
variations

The properties of the solutions of the equations in variations listed below actually
underlie the paraxial ray theory and the Gaussian Beam method as well. They
are known among specialists in Hamiltonian mechanics but are not popular in
geophysics yet. So one can find in geophysical literature, for instance, a description
of the features of the Gaussian Beams without any mathematical basis, causing
these features to be rather mysterious and not too reliable.

Let us write the equations in variations in matrix form. To this end we intro-
duce the vector-column X

X =









q1
q2
p1
p2









.

The derivative of X is defined by

Ẋ =
d

ds
X =









q̇1
q̇2
ṗ1
ṗ2









.

Further, let us introduce the following matrix of second order

C =

















∂2C

∂q1∂q1

∣

∣

∣

∣q1=0
q2=0

∂2C

∂q1∂q2

∣

∣

∣

∣q1=0
q2=0

∂2C

∂q1∂q2

∣

∣

∣

∣q1=0
q2=0

∂2C

∂q2∂q2

∣

∣

∣

∣q1=0
q2=0

















or Cik =
∂2C

∂qi∂qk

∣

∣

∣

∣

q1=q2=0

, i, k = 1, 2.

Then the equations in variations can be presented in the following form

Ẋ =





0 C0E

− 1

C20
C 0



X ,

where

E =

(

1 0
0 1

)

,

i.e. a unit matrix of second order. Indeed, in order to verify this formula it is
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sufficient to write it down in detail:









q̇1
q̇2
ṗ1
ṗ2









=





















0 0 C0 0

0 0 0 C0

− 1

C20
C11

−1
C20

C12 0 0

− 1

C20
C21

−1
C20

C22 0 0





























q1
q2
p1
p2









. (5.12)

Now we see that equations (5.11) coincide with equations (5.12) and therefore
with equations (5.10).

In order to present equations (5.12) in a more convenient form let us introduce
a matrix J of the fourth order

J =









0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0









=

(

0 E
−E 0

)

, E =

(

1 0
0 1

)

.

It has the following properties:

J∗ =

(

0 −E
E 0

)

= −J , detJ = 1 .

J2 =

(

0 E
−E 0

)(

0 E
−E 0

)

=

(

−E 0
0 −E

)

= −I









I =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

















.

J∗J = −JJ = −J2 = I .

Denote by H the following symmetrical matrix

H =







1

C20
C 0

0 C0E






; H∗ = H .

Then the system of equations (5.11) can be written down in the desired form

d

ds
X = JHX . (5.13)

To check this result, it is enough to calculate the matrix product JH

JH =

(

0 E
−E 0

)







1

C20
C 0

0 C0E






=





0 C0E

− 1

C20
C 0
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and to compare it with formula (5.11) or (5.12).
In order to complete the list of additional notations, let us introduce the J -

scalar product of two arbitrary solutions X (1) and X(2) of equations (5.13).
Define

(X(1), X(2)) =
2
∑

i=1

(

q
(1)
i q

(2)
i + p

(1)
i p

(2)
i

)

,

then for the J-scalar product
(

JX(1), X(2)
)

we get

(

JX(1), X(2)
)

= p
(1)
1 q

(2)
1 + p

(1)
2 q

(2)
2 − q

(1)
1 p

(2)
1 − q

(1)
2 p

(2)
2 .

Theorem. Let X(1) and X(2) be two arbitrary solutions of the equations in
variations (5.13), then the J - scalar product of these solutions does not depend
on s, i.e.,

d

ds
(JX(1), X(2)) ≡ 0 .

Proof:

d

ds

(

JX(1), X(2)
)

=

(

J
dX(1)

ds
,X(2)

)

+

(

JX(1),
dX(2)

ds

)

=

=
(

J2HX(1), X(2)) +
(

JX(1),JHX(2)
)

=

= −
(

HX(1), X(2)
)

+
(

J∗JX(1),HX(2)
)

=

= −
(

HX(1), X(2)
)

+
(

X(1),HX(2)
)

=

= −
(

HX(1), X(2)
)

+
(

H∗X(1), X(2)
)

≡ 0

due to H∗ = H, see definition of H.
Consequence. Denote by W(s) the fundamental matrix of the system (5.13),

i.e., its columns are formed by linearly independent solutions of the system and
at an initial point s = s0 equation W(s0) = I holds. Then W(s) satisfies the
following condition

W∗(s)JW(s) = J .

Proof. Let us take two arbitrary vector-columns Z(1) and Z(2) formed by arbi-
trary real numbers, then X(1)(s) = W(s)Z(1) and X(2) = W(s)Z(2) are solutions
of the system (5.13):

d

ds
X(j)(s) =

dW(s)

ds
Z(j) = JHW(s)Z(j) = JHX(j) , j = 1, 2 .

Hence,

(JX(1), X(2)) = const = (JWZ(1),WZ(2)) = (W∗JWZ(1), Z(2)) =

= (W∗(s0)JW(s0)Z
(1), Z(2)) = (IJIZ(1), Z(2)) = (JZ(1), Z(2))

and it holds for arbitrary Z(1) and Z(2). It follows from here that

W∗(s)JW(s) = J .
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Remark 1. Reduction of the equations (5.11) to a 2D case.
To reduce this system to 2D we may simply assume that, for instance, q2 =

p2 = 0 and make q1 = q, p1 = p.
Thus we obtain the following system of differential equations

d

ds
q = C0p ,

dp

ds
= − 1

C20

∂2C

∂q21

∣

∣

∣

∣

q1=0

q ,

which is valid in a 2D case.
Remark 2. Reduction to a 2.5D case.
Assume the vector ~e2(s) is orthogonal to a plane on which a central ray is

placed and the velocity C does not vary in this direction, i.e., C = C(s, q1). In
this case we have ∂2C/∂q1∂q2 = 0 and ∂2C/∂q22 = 0 and therefore equations (5.11)
take the form



















d

ds
q1 = C0p1

dp1
ds

= − 1

C20

∂2C

∂q21

∣

∣

∣

∣

q1=0

q1



















d

ds
q2 = C0p2

d

ds
p2 = 0

.

It means that we get two independent systems for q1 and p1 and for q2 and p2.
The second one can be solved immediately

p2(s) = p2(s0) = const and q2(s) = p2(s0)

∫ s

s0

C0ds+ q2(s0) .

5.5 An algorithm for the computation of the ge-
ometrical spreading

We have the following formulas for the amplitude A and the geometrical spread-
ing J

A0 =
ψ0(α, β)
√

1

C
J

, J =
1

C

∣

∣

∣

∣

D(x, y, z)

D(τ, α, β)

∣

∣

∣

∣

.

Let us introduce the ray centered coordinates s, q1, q2. By using the chain rule
for functional determinants, we obtain

∣

∣

∣

∣

D(x, y, z)

D(τ, α, β)

∣

∣

∣

∣

=

∣

∣

∣

∣

D(x, y, z)

D(s, q1, q2)

D(s, q1, q2)

D(τ, α, β)

∣

∣

∣

∣

= h

∣

∣

∣

∣

D(s, q1, q2)

D(τ, α, β)

∣

∣

∣

∣

. (5.14)

The reason why h appears in (5.14) can be explained as follows. The modulus
of the functional determinant is the Jacobian. But in orthogonal coordinates the
Jacobian is equal to the square root of the product of Lame’s coefficients in the
expression for dS2. The ray centered coordinates are orthogonal and there is only
one coefficient h2 which is not equal to one.
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Suppose we know the solutions of equations (5.11) for the rays in the form

q1 = q1(s, α, β) , q2 = q2(s, α, β) , (5.15)

where s is the arc length of the central ray. Assume that for the central ray
α = α0, β = β0. In order to calculate the functional determinant remained in
equation (5.14), we have to find s as a function of τ, α, β. To this end, consider
the eikonal τ :

τ =

∫ s

s0

√

h2 + q̇21 + q̇22
C(s, q1, q2)

ds . (5.16)

By inserting in equation (5.16) formulas (5.15) we get

τ = τ(s, α, β) . (5.17)

In a vicinity of the central ray (α = α0, β = β0) the latter equation can be solved
(in principle!) with respect to s:

s = s(τ, α, β) .

By taking it into account, we rewrite equations (5.15) in the following form

q1 = q1(s(τ, α, β), α, β) ; q2 = q2(s(τ, α, β), α, β) . (5.18)

It follows from (5.18) that qj , j = 1, 2, are now compound functions of the ray
parameters α and β. Therefore for the derivatives we get

∂qj
∂τ

=
∂qj
∂s

∂s

∂τ
= q̇j

∂s

∂τ
;

∂qj
∂α

=
∂qj
∂s

∂s

∂α
+
∂qj
∂α

= q̇j
∂s

∂α
+
∂qj
∂α

;

∂qj
∂β

= q̇j
∂s

∂β
+
∂qj
∂β

, j = 1, 2.

(5.19)

Bearing in mind equations (5.19) we obtain for the functional determinant in
(5.14) the following expression

D(s, q1, q2)

D(τ, α, β)
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂s

∂τ

∂s

∂α

∂s

∂β

q̇1
∂s

∂τ
q̇1
∂s

∂α
+
∂q1
∂α

q̇1
∂s

∂β
+
∂q1
∂β

q̇2
∂s

∂τ
q̇2
∂s

∂β
+
∂q2
∂β

q̇2
∂s

∂β
+
∂q2
∂β

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
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which can be developed as follows

=
∂s

∂τ

∂s

∂α

∂s

∂β

∣

∣

∣

∣

∣

∣

1 1 1
q̇1 q̇1 q̇1
q̇2 q̇2 q̇2

∣

∣

∣

∣

∣

∣

+
∂s

∂τ

∂s

∂α

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0

q̇1 q̇1
∂q1
∂β

q̇2 q̇2
∂q2
∂β

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∂s

∂τ

∂s

∂β

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 1

q̇1
∂q1
∂α

q̇1

q̇2
∂q2
∂α

q̇2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+
∂s

∂τ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0

q̇1
∂q1
∂α

∂q1
∂β

q̇2
∂q2
∂α

∂q2
∂β

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∂s

∂τ

D(q1, q2)

D(α, β)
.

Thus equation (5.14) takes the form
∣

∣

∣

∣

D(x, y, z)

D(τ, α, β)

∣

∣

∣

∣

= h
∂s

∂τ

∣

∣

∣

∣

D(q1, q2)

D(α, β)

∣

∣

∣

∣

,
∂s

∂τ
=

1

∂τ/∂s
=

C
√

h2 + q̇21 + q̇22
. (5.20)

Now we have to calculate the determinants in (5.20) on the central ray α = α0,
β = β0 , where q1 = q2 = 0 and q̇1 = q̇2 = 0, therefore h = 1 and

∂s

∂τ
= C(s, 0, 0) ≡ C0(s) .

Obviously,
∣

∣

∣

∣

D(x, y, z)

D(τ, α, β)

∣

∣

∣

∣

α=α0,β=β0

= C0

∣

∣

∣

∣

D(q1, q2)

D(α, β)

∣

∣

∣

∣

α=α0,β=β0

and the final expression for the amplitude A0 reads

A0 =
ψ0(α, β)

√

(1/C0) |D(q1, q2)/D(α, β)|

∣

∣

∣

∣

∣

α=α0,β=β0

.

For the sake of simplicity, let us introduce additional notations

Q1,1 ≡
∂q1
∂α

∣

∣

∣

∣

α=α0,β=β0

; Q1,2 ≡
∂q1
∂β

∣

∣

∣

∣

α=α0,β=β0

;

Q2,1 ≡
∂q2
∂α

∣

∣

∣

∣

α=α0,β=β0

; Q2,2 ≡
∂q2
∂β

∣

∣

∣

∣

α=α0,β=β0

(5.21)

and define

Q =

(

Q1,1 Q1,2
Q2,1 Q2,2

)

,

so Q is the second order matrix. Then the equation for amplitude A0 can be
rewritten in the form

A0 =
ψ0(α, β)

√

1

C0
|detQ|

. (5.22)
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Note that this is the expression for the amplitude A0 calculated on the central
ray of the ray tube!

Thus, to compute A0 on a particular ray we have to know the matrix Q along
this ray.

Let us now derive differential equations for the elements of matrix Q.
We start with Euler’s equations in Hamiltonian form

d

ds
qj =

∂H

∂pj
;

d

ds
pj = −∂H

∂qj
, j = 1, 2. (5.23)

Suppose we know the solutions for the rays from the ray tube:

qj = qj(s, α, β) , pj = pj(s, α, β) , j = 1, 2.

By inserting them in (5.23) we obtain identities with respect to s, α, β. Let us
differentiate (5.23) on the ray parameters α, β and put α = α0, β = β0, i.e.
calculate the derivatives on the central ray. But on the central ray we have q1 =
q2 = p1 = p2 = 0, therefore we eventually arrive at the following equations

d

ds

∂qj
∂α

∣

∣

∣

∣

α=α0,β=β0

=
2
∑

m=1

(

∂2H

∂pj∂qm

∂qm
∂α

+
∂2H

∂pj∂pm

∂pm
∂α

)∣

∣

∣

∣

α=α0,β=β0

⇒

d

ds
Qj,1 =

2
∑

m=1

(

∂2H

∂pj∂qm

∣

∣

∣

∣

q=p=0

Qm,1 +
∂2H

∂pj∂pm

∣

∣

∣

∣

q=p=0

Pm,1

)

,

where we use additional notations

P1,1 =
∂p1
∂α

∣

∣

∣

∣

α=α0,β=β0

; P1,2 =
∂p1
∂β

∣

∣

∣

∣

α=α0,β=β0

;

P2,1 =
∂p2
∂α

∣

∣

∣

∣

α=α0,β=β0

; P2,2 =
∂p2
∂β

∣

∣

∣

∣

α=α0,β=β0

.

Obviously,

∂2H

∂pj∂qm

∣

∣

∣

∣

q=p=0

=
∂2H2
∂pj∂qm

∣

∣

∣

∣

q=p=0

,
∂2H

∂pj∂pm

∣

∣

∣

∣

q=p=0

=
∂2H2
∂pj∂pm

∣

∣

∣

∣

q=p=0

and therefore we can replace H by H2. Clearly, similar calculations can be carried
out for the second part of equations (5.23). Thus, we just arrive at the equations
in variations!

Indeed, by taking into account expression for H2 we obtain, for example,

d

ds
Qj,1 = C0Pj,1 .

Let us introduce the following second order matrix

P =

(

P1,1 P1,2
P2,1 P2,2

)
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then the desired equations can be presented in a matrix form

d

ds
Q = C0P ;

d

ds
P = − 1

C20
CQ . (5.24)

Clearly, they coincide with equations (5.11).

5.6 Point source, initial data for Q and P

In the case of a point source, the initial data for the rays read

~r(σ, α, β)
∣

∣

σ=0
= ~rA ,

where ~rA is the radius vector of the source, and

d~r(σ, α, β)

dσ

∣

∣

∣

∣

σ=0

= ~t (0)(α, β) ,

where ~t (0)(α, β) is a unit vector tangent to a ray fixed by the ray parameters α,
β. We denote here by σ the arc length along each ray and preserve s as the arc
length along the central ray of a ray tube. Then for the central ray field we have

~r(σ, α, β) = ~r0(s) + q1(s, α, β)~e1(s) + q2(s, α, β)~e2(s) (5.25)

and σ now has to be considered as a function of s, α, β:

dσ =
√

h2 + q̇21 + q̇22ds , σ =

∫ s

0

√

h2 + q̇21 + q̇22ds . (5.26)

Due to the fact that all rays start from the same point A, we immediately get
that

q1(0, α, β) = 0 , q2(0, α, β) = 0 , (5.27)

and by differentiating the latter equations on α, β we obtain the following initial
conditions for the matrix Q

Q
∣

∣

s=0
= 0 . (5.28)

So, the next step now is to find the initial conditions for the matrix P.
To this end, let us differentiate equation (5.25) with respect to σ and put σ = 0.

(We assume that at the point A we have σ = 0 and s = 0). Note that according
to equation (5.26) we can consider s as a function of σ as well, i.e., s = s(σ, α, β).
Thus, now we get consistently

d~r(σ, α, β)

dσ

∣

∣

∣

∣

σ=0

≡ ~t (0)(α, β) =
d~r0(s)

ds

ds

dσ

∣

∣

∣

∣

s=0

+

2
∑

j=1

(

q̇j~ej
ds

dσ
+ qj

d~ej
ds

ds

dσ

)∣

∣

∣

∣

s=0

=



~t0 +

2
∑

j=1

q̇j(0, α, β)~ej(0)





ds

dσ

∣

∣

∣

∣

σ=0

(5.29)
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because qj(0, α, β) = 0, j = 1, 2.
From equation (5.26) we get

ds

dσ
=

1
√

h2 + q̇21 + q̇22

and according to the definition of slowness pj we have

pj =
∂L

∂q̇j
=

q̇j

C
√

h2 + q̇21 + q̇22

(

L =

√

h2 + q̇21 + q̇22
C

)

.

By taking it into account, we rewrite equation (5.29) as follows

~t (0)(α, β) = ~t0(0)
1

√

h2 + q̇21 + q̇22
+

2
∑

j=1

Cpj(0, α, β)~ej(0) . (5.30)

By multiplying both sides of equation (5.30) by ~e1(0) and ~e2(0) we obtain

pj(0, α, β) =
1

C(0, 0, 0)
(~t (0)(α, β), ~ej(0)) , j = 1, 2, (5.31)

where C(0, 0, 0) means the velocity value at the point source.
By differentiating equation (5.31) with respect to the ray parameters α, β and

by considering α = α0, β = β0 we obtain the desired initial data for the elements
of the matrix P:

Pj,1(0) ≡
∂pj(0, α, β)

∂α

∣

∣

∣

∣

α=α0,β=β0

=
1

C(0, 0, 0)

(

∂~t (0)

∂α

∣

∣

∣

∣

α=α0,β=β0

, ~ej(0)

)

, (5.32)

Pj,2(0) ≡
∂pj(0, α, β)

∂β

∣

∣

∣

∣

α=α0,β=β0

=
1

C(0, 0, 0)

(

∂~t (0)

∂β

∣

∣

∣

∣

α=α0,β=β0

, ~ej(0)

)

, j = 1, 2.

Let us look at the computational algorithm for the geometrical spreading once
again. Suppose, we know the ray connecting a source and an observation point.
How can the amplitude A0 be computed?

The answer can be formulated as follows:

1. We have to construct two unit vectors ~e1(s) and ~e2(s) in order to compute
derivatives of velocity with respect to q1 and q2. To this end, we have to
solve a differential equation, e.g., for ~e1(s), then ~e2(s) can be found as a
vector product of ~e1 and a tangent vector ~t = d~r/ds to the ray.

2. Next, we have to construct two solutions of the equations in variations (5.11)

X(1) =









Q1,1
Q2,1
P1,1
P2,1









and X(2) =









Q1,2
Q2,2
P1,2
P2,2
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specified by corresponding initial conditions, in the case of a point source by
conditions (5.28), (5.32).

Then the absolute value of the determinant of the matrix

Q =

(

Q1,1 Q1,2
Q2,1 Q2,2

)

gives us the geometrical spreading.

3. The final expression for the amplitude is given by formula (5.22)

A0 =
ψ0(α, β)

√

1

C0
|detQ|

.

5.7 Reduction to a 2D case

1. There is no need to solve any differential equation to find a vector ~e(s) of
the ray centered coordinates. It can be chosen as the normal to the ray.

2. Equations in variations now read (Q1,1 ≡ Q and P1,1 ≡ P ):

d

ds
Q = C0P ,

d

ds
P = − 1

C20

∂2C

∂q2

∣

∣

∣

∣

q=0

·Q ,

and we have to find one solution of this system specified by a certain initial
conditions. For the point source problem we have

Q
∣

∣

s=0
= 0 , P

∣

∣

s=0
=

1

C(0, 0)

(

∂~t (0)

∂α

∣

∣

∣

∣

α=αo

, ~e(0)

)

.

3. Formula for A0 takes the form

A0 =
ψ0(α)
√

1

C0
|Q|

.

Example. A homogeneous medium, C = C0 = const.
Let the ray parameter α be an angle ϕ between axis x and vector ~t (0) tangent

to the ray, so that
~t (0) =~i cosϕ+ ~k′ sinϕ .

Suppose that the initial orientation ~e(0) of vector ~e(s) is chosen as follows

~e(0) = −~i sinϕ+ ~k′ cosϕ .
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The equations in variations take the form

d

ds
Q = C0P ,

d

ds
P = 0⇒

{

Q(s) = C0P (0)s+Q(0)
P (s) = P (0) = const

.

The initial data in the case of the point source are the following

Q|s=0 = 0 , P |s=0 =
1

C0

(

∂~t (0)

∂ϕ
,~e(0)

)

=

=
1

C0
(−~i sinϕ+ ~k′ cosϕ,−~i sinϕ+ ~k′ cosϕ) =

1

C0
,

therefore Q(s) = s and

A0 =
ψ0(α)
√

1

C0
s

.

5.8 An example of a constant gradient velocity
model: a point source problem

Assume a velocity C(z) given by the formula

C = a+ bz , a > 0 , b > 0 .

In this case, the rays are circles with their centers being placed on the straight
line z = z0, where velocity is equal to zero, i.e.,

C = a+ bz0 = 0→ z0 = −a
b
.

Let the central ray of a ray tube be given in the form










z = R sin
( s

R
+ θ
)

+ z0

x = −R cos
( s

R
+ θ
)

+ x0
,

where R and θ are some parameters (see Fig. 5.2) and s is the arc length along
the ray. We specify these parameters by the condition in which this ray passes the
origin z = 0, x = 0 when s = 0, therefore

{

0 = R sin θ + z0
0 = −R cos θ + x0

⇒







R = − z0
sin θ

x0 = R cos θ = −z0 ctg θ =
a

b
ctg θ

.

We choose vector ~e(0) as follows

~e(0) = − cos θ~i+ sin θ ~k′ .



An example of a constant gradient velocity model: a point source problem 59

R
z0 = −a/b

x0 x

z

~e(0) θ

~r0(s)
~t (0)

Figure 5.2: Rays in a medium with constant gradient velocity.

The initial tangent vector ~t (0)(α) to a ray will take the form

~t (0)(α) = sinα~i+ cosα ~k′

so α has the same geometrical sense as θ and we consider further α = θ, see
Fig. 5.2.

Equations for Q and P take the following form

d

ds
Q = C0P ,

d

ds
P = 0

(

due to
∂2C

∂q2
≡ 0

)

.

The general solution reads

P (s) = P (0) = const ,

Q(s) = P (0)

∫ s

0

C0(s)ds+Q(0) .

Let us calculate integral
∫ s

0
C0(s)ds. We have for the central ray

C0(s) = a+ b
[

R sin
( s

R
+ θ
)

+ z0

]

= a+ bz0 + bR sin
( s

R
+ θ
)

=

= bR sin
( s

R
+ θ
)

,

therefore
∫ s

0

C0(s)ds = bR

∫ s

0

sin
( s

R
+ θ
)

ds = bR2
[

cos θ − cos
( s

R
+ θ
)]

.

Initial data for Q and P in the case of the point source are the following

Q
∣

∣

s=0
= 0→ Q(0) = 0 ,

P
∣

∣

s=0
=

1

C(0)

(

∂~t (0)

∂α

∣

∣

∣

∣

α=θ

, ~e(0)

)

, C(0) = a ,

and we have to calculate the scalar product

P (0) =
1

a
(cos θ~i− sin θ~k′,− cos θ~i+ sin θ~k′) =

− cos2 θ − sin2 θ

a
= −1

a
.
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Hence, we get, for our particular solution, the following result

P (s) = −1

a
,

Q(s) =
−1
a
bR2

[

cos θ − cos
( s

R
+ θ
)]

.

Thus, for the geometrical spreading J we obtain the following formula

J = |Q(s)| = bR2

a

∣

∣

∣cos θ − cos
( s

R
+ θ
)∣

∣

∣ .

5.9 Solution of the eikonal equation in a vicinity
of the central ray

In a vicinity of the central ray ~r0(s) of a ray tube we use the ray centered coordi-
nates s, q1, q2. Let us seek a solution of the eikonal equation as a power series in
q1 and q2

τ(s, q1, q2) = τ0(s) +
1

2

2
∑

i,j=1

Γij(s) · qiqj + . . . . (5.33)

There are no linear terms in q1 and q2 because the wavefronts τ = const and
the rays are orthogonal. Indeed, for example,

∂τ

∂q1

∣

∣

∣

∣

q1=q2=0

means the derivative along ~e1 which is orthogonal to the central ray. This implies
that we differentiate along τ =const and therefore

∂τ

∂q1

∣

∣

∣

∣

q1=q2=0

= 0 .

We may say that the coefficients Γij , i, j = 1, 2 form a matrix Γ of the second order
and this matrix has to be symmetrical, i.e., Γ12 = Γ21 (because q1q2 = q2q1).

If we introduce vector ~q by the formula

~q =

(

q1
q2

)

the second order terms can be presented in the form

1

2

2
∑

i,j=1

Γijqiqj =
1

2
(Γ~q, ~q) .

Now we need to write the eikonal equation in the ray centered coordinates. It
is known that

∇τ =
~t

h

∂τ

∂s
+
∂τ

∂q1
~e1 +

∂τ

∂q2
~e2
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and therefore

(∇τ,∇τ) =
1

h2

(

∂τ

∂s

)2

+

(

∂τ

∂q1

)2

+

(

∂τ

∂q2

)2

=
1

C2(s, q1, q2)
. (5.34)

In order to insert expression (5.33) for the eikonal in equation (5.34), we have
to decompose 1/h2 and 1/C2 into power series on q1 and q2 also.

Obviously, we have

1

h
=

1

1 +
∑2

j=1 κjqj
= 1−

2
∑

j=1

κjqj +





2
∑

j=1

κjqj





2

+ . . .

and therefore

1

h2
= 1− 2

2
∑

j=1

κjqj + 3





2
∑

j=1

κjqj





2

+ . . . .

For 1/C we already had the following formula (see section 5.3)

1

C
=

1

C0
− 1

C0

2
∑

j=1

κjqj +
1

C0





2
∑

j=1

κjqj





2

− 1

2C20

2
∑

i,j=1

Cijqiqj + . . . .

It follows from here that

1

C2
=

1

C20
− 2

C20

2
∑

j=1

κjqj +
3

C20





2
∑

j=1

κjqj





2

− 1

C30

2
∑

i,j=1

Cijqiqj + . . . .

By taking into account equation (5.33), we obtain

∂τ

∂s
= τ

′

0 +
1

2

2
∑

i,j=1

Γ
′

ijqiqj + · · · ;
(

∂τ

∂s

)2

= (τ
′

0)
2 + τ

′

0

2
∑

i,j=1

Γ
′

ijqiqj + . . . ;

where by ′ we denote derivative d/ds, and

(

∂τ

∂q1

)2

=
(

Γ11q1 + Γ12q2
)2
,

(

∂τ

∂q2

)2

=
(

Γ12q1 + Γ22q2
)2
.

We get the following result from the two last equations

(

∂τ

∂q1

)2

+

(

∂τ

∂q2

)2

= (Γ211 + Γ212)q
2
1 + 2(Γ11Γ12 + Γ12Γ22)q1q2 + (Γ212 + Γ222)q

2
2 =

=

2
∑

i,j=1

(Γ2)ijqiqj
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because

Γ2 =

(

Γ11 Γ12
Γ12 Γ22

)(

Γ11 Γ12
Γ12 Γ22

)

=

(

Γ211 + Γ212 Γ11Γ12 + Γ12Γ22
Γ11Γ12 + Γ12Γ22 Γ212 + Γ222

)

.

Now we are able to insert all these expressions in the eikonal equation (5.34)
and to equate those terms which contain the same power of q1 and q2 in both sides
of the eikonal equation.

For the terms, containing q01 and q02 we easily obtain

(τ
′

0)
2 =

1

C20
→ τ ′0 = ± 1

C0

and for the wave propagating along the central ray we have to take +, i.e.,

τ ′0 =
1

C0
→ τ0 =

∫ s

s0

ds

C0
+ τ0(s0) .

Linear terms in q1 and q2 give us the following equality

−2(τ ′0)2
2
∑

j=1

κjqj = − 2

C20

2
∑

j=1

κjqj

which is already fulfilled due to equation for τ ′o.
Second order terms lead to the following equality

3(τ ′0)
2





2
∑

j=1

κjqj





2

+ τ ′0

2
∑

i,j=1

Γ′
ijqjqj +

2
∑

i,j=1

(Γ2)ijqiqj =

=
3

C20





2
∑

j=1

κjqj





2

− 1

C30

2
∑

i,j=1

Cijqiqj .

This equation can be presented as follows

2
∑

i,j=1

qiqj

{

τ ′0Γ
′
ij + (Γ2)ij +

1

C30
Cij

}

= 0

and to satisfy it we have to impose

1

C0

d

ds
Γij + (Γ2)ij +

1

C30
Cij = 0 , for i, j = 1, 2.

This is a system of ordinary but nonlinear differential equations because of the
term Γ2. In matrix form it can be written as follows

d

ds
Γ+ C0Γ

2 +
1

C20
C = 0 . (5.35)
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This is called Ricatti’s matrix equation. How do we integrate this equation?
It can be reduced to a system of linear equations by means of the following

substitution. Let us seek matrix Γ in the form

Γ = PQ−1 (5.36)

where matrices of the second order P and Q are so far unknown.
Further, we have obviously

d

ds
Γ =

dP

ds
Q−1 +P

d

ds
Q−1 .

In order to find the derivative of Q−1 we can differentiate the identity QQ−1 =
E. Indeed,

d

ds
(QQ−1) =

d

ds
E = 0

but
d

ds
(QQ−1) =

dQ

ds
Q−1 +Q

dQ−1

ds

and therefore
dQ−1

ds
= −Q−1 dQ

ds
Q−1 .

Now we can substitute matrix Γ in Ricatti’s matrix equation (5.35) by the left
hand side of equation (5.36)

dP

ds
Q−1 −PQ−1 dQ

ds
Q−1 + C0PQ−1PQ−1 +

1

C20
C =

=
dP

ds
Q−1 +

1

C20
C−PQ−1

(

dQ

ds
− C0P

)

Q−1 = 0

and in order to satisfy the latter equation we may simply put

dQ

ds
= C0P ,

dP

ds
= − 1

C20
CQ . (5.37)

But now we recognize that equations (5.37) coincide with the equations in
variations (see formulas (5.24)).

So, to solve Ricatti’s equation (5.35) for matrix Γ we may use some solutions
of the equations in variations, i.e., the linearized equations for the rays from a ray
tube around the central ray!

But an important question arises on the way. Will matrix Γ be symmetrical?
In order to get the answer to the question, we have to check the following

equality

ΓT − Γ = 0→ (PQ−1)T −PQ−1 = 0→ (QT )−1PT −PQ−1 = 0 .
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Let us multiply the latter equation by QT from the left side and by Q from
the right side, then we get the following equation

PTQ−QTP = 0 ,

which is equivalent to the initial one (if detQ 6= 0). By substituting here the
matrices P and Q we obtain

PTQ−QTP =

(

P1,1 P2,1
P1,2 P2,2

)(

Q1,1 Q1,2
Q2,1 Q2,2

)

−

−
(

Q1,1 Q2,1
Q1,2 Q2,2

)(

P1,1 P1,2
P2,1 P2,2

)

=

=

(

0 +(JX(1), X(2))
−(JX(1), X(2)) 0

)

where by X(1) and X(2) we denote the following vector-columns

X(1) =









Q1,1
Q2,1
P1,1
P2,1









and X(2) =









Q1,2
Q2,2
P1,2
P2,2









.

Thus we obtain the following result: if the J-scalar product of two solutions
X(1) and X(2) of the equations in variations is equal to zero, the matrix Γ will be
symmetrical.

Remark 1. Notice that the matrix Q cannot be singular, i.e., detQ 6= 0 at least
identically with respect to s. Otherwise the matrix Γ will not exist. However,
precisely as regards to caustics, detQ = 0 and therefore the elements of matrix Γ
become singular on caustics.

Remark 2. For a point source we had Q1,1 = Q2,1 = Q1,2 = Q2,2 = 0 at the

initial point s = 0, therefore (JX(1), X(2)) =
(

JX(1)(0), X(2)(0)
)

= 0 and ΓT = Γ.

5.10 Reduction to a 2D case

In this case we can simply assume q2 ≡ 0 and put q1 ≡ q, therefore for the eikonal
τ we have

τ(s, q) = τ0(s) +
1

2
Γq2 + · · · , (5.38)

where Γ now is not a matrix but a scalar function. It must satisfy Ricatti’s equation

Γ′ + C0Γ
2 +

1

C20

∂2C

∂q2

∣

∣

∣

∣

q=0

= 0 .

Now we simply make

Γ =
P

Q
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and obtain the equations in variations

Q′ = C0P , P ′ = − 1

C20

∂2C

∂q2
∣

∣

q=0
·Q . (5.39)

Example 1. A homogeneous medium, point source.
Initial data for Q and P are the following

Q(0) = 0 , P (0) =
1

C0
.

The corresponding solution of (5.39) reads

Q(s) = s , P (s) =
1

C0
,

therefore for the eikonal (5.38) we get

τ(s, q) =
s

C0
+

1

2

q2

C0s
+ · · · .

Consider now wave fronts τ = const in a vicinity of the central ray. Make const
= τ∗ and let s = s∗, q = 0 be the point of intersection between the central ray and
the wave front. So τ∗ = s∗/C0 and we get

τ(s, q) =
s

C0
+

1

2

q2

C0s
+ · · · = s∗

C0
.

It follows from here that approximately

s− s∗ ∼= −
1

2

q2

s∗
,

and therefore

C0
P

Q

∣

∣

∣

∣

s=s∗

=
1

s∗
=

1

R∗

,

where R∗ is the radius of curvature of the wave front on the central ray at the point
s = s∗. This example illustrates the geometrical sense of C0Γ as the curvature of
the wave front at a point of intersection with the central ray of a ray tube. It also
holds true in 3D, but in this case the matrix C0Γ describes the main curvatures
of the wave front and their orientation with respect to vectors ~e1 and ~e2.

Example 2. Constant gradient velocity model, point source problem.
As above we assume velocity C to be given in the form C = a+ bz; a, b > 0.
In this case we had

P (s) = −1

a
, Q(s) =

−1
a
bR2

[

cos θ − cos
( s

R
+ θ
)]

,

hence, for the eikonal we obtain now

τ(s, q) = τ0(s) +
1

2

q2

bR2
[

cos θ − cos
(

s
R + θ

)] + · · · ,



66 The paraxial ray theory

where

τ0(s) =

∫ s

0

ds

C0(s)
=

1

bR

∫ s

0

ds

sin( sR + θ)
=

1

b
ln tg

(

s

2R
+
θ

2

)∣

∣

∣

∣

s=s

s=0

=

=
1

b

[

ln tg

(

s

2R
+
θ

2

)

− ln tg
θ

2

]

=
1

b
ln

tg
( s

2R
+ θ
2

)

tg θ
2

.

5.11 Reduction to 2.5D

In this case velocity C does not depend on q2 and matrix C takes the form

C =

(

C11 0
0 0

)

, C11 =
∂2C

∂q21

∣

∣

∣

∣

q1=0

.

The equations in variations in matrix form read






Q̇1,1 Q̇1,2

Q̇2,1 Q̇2,2






=







C0P1,1 C0P1,2

C0P2,1 C0P2,2






;







Ṗ1,1 Ṗ1,2

Ṗ2,1 Ṗ2,2






=







−C11
C20

Q1,1 −C11
C20

Q1,2

0 0







and then for the elements of the matrices we get

Q̇1,j = C0P1,j ; Ṗ1,j = −C11
C20

Q1,j , j = 1, 2, (5.40)

Q̇2,j = C0P2,j ; Ṗ2,j = 0 , j = 1, 2. (5.41)

Equations (5.40) and (5.41) are independent systems of ordinary differential
equations. The latter one can be integrated immediately and its general solution
reads

P2,j(s) = P2,j(0) = const, Q2,j(s) = P2,j(0)

∫ s

0

C0(s)ds+Q2,j(0) .

Now let us consider the initial data in detail. It is convenient to use the
spherical angles θ and ϕ as the ray parameters. For the unit vector ~t (0) tangent
to the ray we have in this case

~t (0)(θ, ϕ) = sin θ cosϕ~i+ sin θ sinϕ~j + cos θ ~k′ .

Then, let us choose an initial orientation of the unit vectors ~e1(0) and ~e2(0) as
follows

~e1(0) =
∂~t (0)

∂θ

∣

∣

∣

∣

ϕ=ϕ0,θ=θ0

, ~e2(0) =
1

sin θ0

∂~t (0)

∂ϕ

∣

∣

∣

∣

ϕ=ϕ0,θ=θ0

,
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where ϕ0, θ0 correspond to the central ray of a ray tube.

Further, we shall consider the rays from x, z plane only and assume that the
velocity does not depend on y. This is precisely what provides simplification.

Make then ϕ0 = 0 and for the central ray of a ray tube we get

~t(θ0, 0) = sin θ0~i+ cos θ0 ~k
′ .

For the unit vectors ~e1(0) and ~e2(0) we obtain respectively

~e1(0) =
∂~t (0)

∂θ

∣

∣

∣

∣

θ=θ0,ϕ=0

= cos θ0~i− sin θ0 ~k
′ ,

~e2(0) =
∂~t (0)

∂ϕ

∣

∣

∣

∣

θ=θ0,ϕ=0

· 1

sin θ0
= ~j .

The initial data for Qi,j in case of a point source are the following

Qi,j(0) = 0 , i, j = 1, 2 .

In order to obtain the initial data for Pi,j we have to carry out some calcula-
tions.

We had the following expressions for slownesses pj

pj(0, θ, ϕ) =
1

C(0, 0, 0)
(~t (0)(θ, ϕ), ~ej(0)) , j = 1, 2,

where α = θ and β = ϕ are considered. By differentiating the latter formulas with
respect to θ and ϕ we obtain

Pj,1(0) =
∂pj
∂θ

∣

∣

∣

∣

θ=θ0,ϕ=0

=
1

C(0, 0, 0)

(

∂~t (0)

∂θ
,~ej(0)

)∣

∣

∣

∣

θ=θ0,ϕ=0

=

=
1

C(0, 0, 0)
(~e1(0), ~ej(0)) ,

Pj,2(0) =
∂pj
∂ϕ

∣

∣

∣

∣

θ=θ0,ϕ=0

=
1

C(0, 0, 0)

(

∂~t (0)

∂ϕ
,~ej(0)

)∣

∣

∣

∣

θ=θ0,ϕ=0

=

=
sin θ0

C(0, 0, 0)
(~e2(0), ~ej(0)) .
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Now we get the final results for column-vectors X (j)(0), j = 1, 2,

X(1)(0) =









Q1,1(0)
Q2,1(0)
P1,1(0)
P2,1(0)









=











0
0
1

C(0, 0, 0)
0











;

X(2)(0) =









Q1,2(0)
Q2,2(0)
P1,2(0)
P2,2(0)









=













0
0
0

sin θ0
C(0, 0, 0)













.

(5.42)

Note, that (JX(1)(0), X(2)(0)) = 0 and matrix Γ will be symmetrical!
Based on initial data (5.42) we can present X (1) and X(2) for arbitrary s in

the following form

X(1)(s) =









Q1,1(s)
0

P1,1(s)
0









, X(2)(s) =









0
Q2,2(s)

0
P2,2(s)









where

P2,2(s) = P2,2(0) =
sin θ0

C(0, 0, 0)

and

Q2,2(s) = P2,2(0)

∫ s

0

C0ds =
sin θ0

C(0, 0, 0)

∫ s

0

C0(s)ds .

As for Q1,1(s) and P1,1(s) we only know that they satisfy equations (5.40) and
do not equal to zero identically with respect to s.

These results follow from the systems of equations (5.40),(5.41) and from initial
conditions (5.42) almost straightforward. Indeed, both systems of equations (5.40)
and (5.41) are homogeneous, so the unique solution of such a system, specified also
by homogeneous initial conditions, is equal to zero identically.

Thus, we obtain the following structure for matrixes Q and P

Q(s) =

(

Q1,1(s) 0
0 Q2,2(s)

)

, ⇒ Q−1(s) =

(

Q−1
1,1(s) 0

0 Q−1
2,2(s)

)

,

P̂(s) =

(

P1,1(s) 0
0 P2,2(s)

)

.

Hence, we get for matrix Γ = PQ−1 the following expression

Γ =









P1,1(s)

Q1,1(s)
0

0
P2,2(s)

Q2,2(s)









.
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Eventually, the eikonal τ in the 2.5D case takes the form

τ(s, q1, q2) =

∫ s

0

ds

C0(s)
+

1

2

P1,1(s)

Q1,1(s)
q21 +

1

2

P2,2(s)

Q2,2(s)
q22 + · · · .

Example. Constant gradient velocity model, a point source, 2.5D case.
We assume that C = a+ bz. The equations (5.40) and (5.41) take the form

Q̇1,j = C0P1,j , Ṗ1,j = 0 , j = 1, 2 ,

Q̇2,j = C0P2,j , Ṗ2,j = 0 , j = 1, 2 .

Now we have to take into account initial conditions (5.42).
For Q1,1 and P1,1 we obtain

P1,1(0) =
1

C(0, 0, 0)
=

1

a
, Q1,1(0) = 0 ,

and therefore

P1,1(s) =
1

a
; Q1,1(s) =

1

a

∫ s

0

C0(s)ds =
bR

a

∫ s

0

sin(
s

R
+ θ)ds =

=
bR2

a

[

cos θ − cos(
s

R
+ θ)

]

.

For Q2,2 and P2,2 we obtain

P2,2(0) =
sin θ0

C(0, 0, 0)
=

sin θ0
a

; Q2,2(0) = 0

therefore

P2,2(s) =
sin θ0
a

, Q2,2(s) = P2,2(0)

∫ s

0

C0(s)ds =

=
sin θ0
a

bR2
[

(cos θ − cos(
s

R
+ θ)

]

.

Finally, we get the following result for the eikonal τ :

τ(s, q1, q2) = τ0(s) +
q21 + q22

2bR2
[

cos θ − cos( sR + θ)
] + · · · .

5.12 Solution of the transport equation in a vicin-
ity of the central ray

The transport equation for the main term of amplitude A0 reads

2(∇A0,∇τ) +A0∆τ = 0 . (5.43)



70 The paraxial ray theory

We seek a solution of this equation in the form of a power series on q1 and q2

A0(s, q1, q2) = A
(0)
0 (s) +

2
∑

j=1

A
(j)
0 (s)qj + · · · . (5.44)

But this time we shall look only for A
(0)
0 (s) which is precisely the amplitude

A0 computed on the central ray of a ray tube.
In the ray centered coordinates s, q1, q2 we have

∇ =
~t

h

∂

∂s
+ ~e1

∂

∂q1
+ ~e2

∂

∂q2
,

and for the Laplace operator

∆τ =
1

h

{

∂

∂s

(

1

h

∂τ

∂s

)

+
∂

∂q1

(

h
∂τ

∂q1

)

+
∂

∂q2

(

h
∂τ

∂q2

)}

=

1

h2
∂2τ

∂s2
− 1

h3
∂h

∂s

∂τ

∂s
+
∂2τ

∂q21
+
∂2τ

∂q22
+

1

h

∂h

∂q1

∂τ

∂q1
+

1

h

∂h

∂q2

∂τ

∂q2
.

For the eikonal τ we may use the following formula

τ(s, q1, q2) = τ0(s) +
1

2

2
∑

i,j=1

Γij(s)qiqj + · · · . (5.45)

Now we have to insert formulas (5.44), (5.45) into the transport equation (5.43)
and to gather the terms of the same order with respect to q1 and q2. But for the

main term A
(0)
0 (s), it is enough to calculate the left-hand side of (5.43) precisely

on the central ray. Let us conduct this program step by step.
Evidently,

(∇A0,∇τ)
∣

∣

q1=q2=0
=

(

~t
dτ0
ds

,~t
dA

(0)
0

ds

)

=
dA

(0)
0

ds

dτ0
ds

=
1

C0

dA
(0)
0

ds

and

∆τ
∣

∣

q1=q2=0
=

(

∂2τ

∂s2
+
∂2τ

∂q21
+
∂2τ

∂q22
+ κ1

∂τ

∂q1
+ κ2

∂τ

∂q2

)∣

∣

∣

∣

q1=q2=0

=

d2τ0
ds2

+ trΓ = − 1

C20

dC0
ds

+ trΓ ,

where trΓ = Γ11 + Γ22.
Hence, it follows now from equation (5.43) that

2

C0

dA
(0)
0

ds
+A

(0)
0

(

− 1

C20

dC0
ds

+ trΓ

)

= 0
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and we can develop the latter equation as follows

1

A
(0)
0

dA
(0)
0

ds
= +

1

2

1

C0

dC0
ds
− C0

2
trΓ⇒

d

ds
lnA

(0)
0 =

1

2

d

ds
lnC0 −

1

2
C0 trΓ⇒

lnA
(0)
0 = ln

√

C0 −
1

2

∫ s

s0

C0(s) trΓ(s)ds+ lnψ0 ,

where by lnψ0 we denote a constant of integration.
Eventually,

A
(0)
0 = ψ0

√

C0 exp

{

−1

2

∫ s

s0

C0 trΓds

}

. (5.46)

Next we have to calculate the integral in equation (5.46). To this end, consider
the equations in variations in matrix form

d

ds
Q = C0P ,

d

ds
P = − 1

C20
CQ . (5.47)

The first one can be rewritten as follows

d

ds
Q = C0PQ−1Q = C0ΓQ , Γ = PQ−1 . (5.48)

Suppose, matrix Q satisfies equation (5.48). Let us calculate the derivative on
s of the determinant of Q and insert the result in equation (5.48)

d

ds
detQ =

d

ds
(Q1,1Q2,2 −Q1,2Q2,1) =

= C0(Γ11Q1,1 + Γ12Q2,1)Q2,2 − C0(Γ11Q1,2 + Γ12Q2,2)Q2,1 +

+ C0Q1,1(Γ21Q1,2 + Γ22Q2,2)− C0Q1,2(Γ21Q1,1 + Γ22Q2,1) =

= C0 trΓ detQ ,

and therefore

1

detQ

d

ds
detQ = C0 trΓ⇒ d ln detQ = C0 tr Γ ds⇒

ln detQ =

∫ s

s0

C0 trΓds+ const.

By inserting the latter formula into equation (5.46) we obtain the final result

A
(0)
0 =

ψ0
√

1

C0
|detQ|

,

which we have already established.
Remark. The latter formula proves that detQ = 0 on caustics and only on

caustics where the geometrical spreading vanishes.
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5.13 How can the initial data for the amplitude
be found?

A problem with the initial amplitudes in the ray theory arises in the case of point
sources because the geometrical spreading for the central ray field vanishes at the
source point (it is a caustic!). But point sources are in broad use in theoretical
and applied geophysics. The problem has been solved by means of matching of
asymptotics. The basic ideas of this method can be explained as follows.

In some small vicinity of the point source under consideration we can develop
a perturbation method for the equations of motion (in our case the reduced wave
equation) which provides asymptotics to the problem in closed analytical form.
Then we have to derive the long distance asymptotics (in terms of the wavelength)
from those analytical formulas and that asymptotics has normally the form of a
ray series. On the other hand, we can construct a ray method series for the wave
field and then simplify it in that small vicinity of the point source because the
rays can be regarded there as perturbed straight lines. Finally, by comparing both
these asymptotics, the desired formulas for the initial amplitudes appear. We
demonstrate this procedure below for the main amplitude of the ray series. For
more details see Babich and Kirpichnikova (1979).

Consider first the point source problem in an inhomogeneous medium, 2D.
In this case we have to consider the central ray field with the center at the

source and to construct the eikonal τ and amplitude A0.
Eventually, we obtain the following formula

U = A0e
iωτ =

ψ0(α)
√

1

C
J

eiωτ . (5.49)

In some small vicinity of the source, we may assume velocity C to be constant
and equal to its value at the source C = C(0, 0) ≡ C(0), (we assume that the
source is located at the origin of Cartesian coordinates). But in such a case we
arrive at the corresponding problem for homogeneous medium and therefore

τ =

∫ s

0

ds

C
' s

C(0)
; J = |Q| ' s ,

where s is the arc length along the rays. Evidently, s '
√
x2 + z2.

If we denote r =
√
x2 + z2, then in this vicinity of the source we get

U ' ψ0(α)
√

1

C(0)
r

exp

{

i
ω

C(0)
r

}

. (5.50)

On the other hand, corresponding mathematical formulation of the point source
problem is the following

(

∆ +
ω2

C2

)

G = −δ(M −M0) ,
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where M0 is the position of the source (we omit here an important question about
behavior of desired solution as the observation point M tends to the infinity which
actually provides uniqueness of the solution). Here also in a small vicinity of the
source we may set a value for velocity by C(M0) and consider the problem for the
homogeneous medium

(

∆ +
ω2

C2(0)

)

G = −δ(x)δ(z) . (5.51)

(M0 is put at the origin).
Solution of the latter problem (5.51) is known and reads

G =
i

4
H
(1)
0 (kr) , k =

ω

C(0)
,

where H
(1)
0 is Hankel’s function of zero order and of the first kind.

Suppose now that we are far from the source, precisely, that kr À 1. It implies
that

kr =
2π

λ
r À 1

and we are far from the source in terms of numbers of wavelength!

Then we may replace H
(1)
0 (kr) by its asymptotics

H
(1)
0 (kr) '

√

2

πkr
ei(kr−

π
4 )

and obtain

G ∼= ie−i
π
4

4

√

2

πk

eikr√
r

=
ei

π
4

2
√
2π

√

C(0)

ω

exp
[

i ω
C(0)r

]

√
r

. (5.52)

By comparing expressions (5.50) and (5.52) we obtain the following formula
for ψ0(α) in the case under consideration

ψ0(α) =
ei

π
4

2
√
2πω

. (5.53)

Note that for the point source problem, ψ0 does not depend on the ray param-
eter!

Consider now a 3D case.
In this case the Green’s function G, i.e., solution of equation (5.51), is the

following

G =
1

4πr
eikr , k =

ω

C(0)
, r =

√

x2 + y2 + z2 . (5.54)

On the other hand, for the central ray field in 3D and for a homogeneous
medium we have

U ' ψ0(θ, ϕ)
√

1

C(0)
s2 sin θ

exp

(

i
ω

C(0)
s

)

=
ψ0(θ, ϕ)

√

1

C(0)
sin θ

eikr

r
, (5.55)
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where θ and ϕ are the angles of the spherical coordinates.
By comparing (5.54) and (5.55) we obtain the following formula for ψ0(θ, ϕ)

ψ0(θ, ϕ) =
1

4π

√

sin θ

C(0)
,

and the initial amplitude ψ0 does depend upon the ray parameter θ.



6
The ray method in a medium with

smooth interfaces

When we study the wave propagation in a compound medium consisting of two or
more different media with different characteristics, e.g. with different velocities,
separated by smooth surfaces, we say that we are dealing with a media containing
smooth interfaces. In this case, special type of boundary conditions on the wave
field has to be imposed on the interfaces in order to describe the wave propagation
in the whole medium. For the wave equation under consideration the classical
boundary conditions on a smooth interface S are the following:

Dirichlet’s condition

U
∣

∣

S
= 0 (6.1)

Neumann’s condition
∂U

∂n

∣

∣

∣

∣

S=0

= 0 , (6.2)

where n is a coordinate along a normal vector to the surface S, and U means
the total wave field.

The mixed boundary conditions describing a contact of two media read

U1
∣

∣

S
= U2

∣

∣

S
and

1

ρ1

∂U1
∂n

∣

∣

∣

∣

S

=
1

ρ2

∂U2
∂n

∣

∣

∣

∣

S

, (6.3)

where U1, U2 are the total wave field values, and ρ1, ρ2 are physical properties, e.g.
density values, in the first and in the second medium, respectively.

These conditions have a different physical sense but our main goal now is to
study how to satisfy them within the frames of the ray theory.
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Suppose, that the Dirichlet’s condition is imposed on an interface S. Assume
we have an incident wave given in the form

U (in) = eiωτinA
(in)
0 . (6.4)

To satisfy (6.1) we suppose that the wave process near the boundary gives rise
to a reflected wave U (r) which can be presented in the form of the ray series too

U (r) = eiωτrA
(r)
0 . (6.5)

Now a new problem arises. How can the reflected eikonal, τr, and amplitude,

A
(r)
0 , be constructed when the incident eikonal τin and A

(in)
0 are known?

By inserting (6.4) and (6.5) in equation (6.1) we get
(

eiωτinA
(in)
0 + eiωτrA

(r)
0

)∣

∣

∣

S
= 0 . (6.6)

In order to satisfy this equation we impose the requirement that separately

τin
∣

∣

S
= τr

∣

∣

S
, (6.7)

and
(A
(in)
0 +A

(r)
0 )
∣

∣

S
= 0 . (6.8)

Similarly we get in the case of Neumann’s condition
{

eiωτin

(

iω
∂τin
∂n

A
(in)
0 +

∂A
(in)
0

∂n

)

+ eiωτr

(

iω
∂τr
∂n

A
(r)
0 +

∂A
(r)
0

∂n

)}∣

∣

∣

∣

∣

S

= 0 ,

and the corresponding requirement takes the form

τin
∣

∣

S
= τr

∣

∣

S

and
(

∂τin
∂n

A
(in)
0 +

∂τr
∂n

A
(r)
0

)∣

∣

∣

∣

S

= 0 .

Observe that we omitted the term ∂A0/∂n for both the incident and the reflected
waves. Because they are not multiplied by the large parameter ω, they are sup-
posed to be small.

In the case of conditions (6.3) we suppose that there are three waves: the
incident and the reflected one in the first medium and a transmitted wave in the
second medium. Hence, we get

(

eiωτinA
(in)
0 + eiωτrA

(r)
0

)∣

∣

∣

S
= eiωτtrA

(tr)
0

∣

∣

S

and

1

ρ1

{

eiωτin

(

iω
∂τin
∂n

A
(in)
0 +

∂A
(in)
0

∂n

)

+ eiωτr

(

iω
∂τr
∂n

A
(r)
0 +

∂A
(r)
0

∂n

)}∣

∣

∣

∣

∣

S

=

=
1

ρ2
eiωτtr

(

iω
∂τtr
∂n

A
(tr)
0 +

∂A
(tr)
0

∂n

)∣

∣

∣

∣

∣

S

.
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In the ray theory we substitute them by the following equations

τin
∣

∣

S
= τr

∣

∣

S
= τtr

∣

∣

S

and
(

A
(in)
0 +A

(r)
0

)∣

∣

∣

S
= A

(tr)
0

∣

∣

S
,

1

ρ1

{

∂τin
∂n

A
(in)
0 +

∂τr
∂n

A
(r)
0

}∣

∣

∣

∣

S

=
1

ρ2

∂τtr
∂n

A
(tr)
0

∣

∣

∣

∣

S

.

It should be emphasized once again that, while deriving the boundary condi-
tions within the zero-order term of the ray theory, we take into account only the
main terms, i.e., the terms which contain the large parameter ω, and omit others.
Hence, we satisfy the original boundary conditions only approximately in the ray
theory.

And finally, as it follows from the theory of the eikonal and transport equations
described above, in order to find the eikonals and amplitudes for the reflected and
the transmitted waves, we have to construct proper families of rays.

6.1 Equations for the eikonals; Snell’s law

Let us introduce in a vicinity of the incident point M three mutually orthogonal
unit vectors ~n, ~l1, ~l2 where ~n is a normal to the surface S and ~l1, ~l2 are placed on
the tangent plane to S at the point M , see Fig. 6.1.

S
M

~t (in)

~l1

~n ~t (r)

ϕin

ϕr

Figure 6.1: Reflection on an interface S. ~t (in) and ~t (r) are unit vectors tangent
to the incident and the reflected rays, respectively.

By differentiating equation (6.7) for the eikonals in the direction of ~l1 and ~l2
we get

∂τin
∂lj

∣

∣

∣

∣

S

=
∂τr
∂lj

∣

∣

∣

∣

S

⇒ (∇τin,~lj) = (∇τr,~lj) , j = 1, 2. (6.9)

Note that we cannot differentiate equation (6.7) along the normal ~n, because
this equation is valid only on S!
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It follows from (6.9) that the projections of ∇τin and ∇τr onto the tangent
plane are equal and, hence, we get

∇τin −∇τr = χ~n , (6.10)

where χ is a scalar factor, χ 6= 0. Taking into account that

∇τin =
~t (in)

C
and ∇τr =

~t (r)

C
,

we get from (6.10) the first statement of the Snell’s law. The three vectors ~t (in),
~t (r) and ~n are placed on one plane. This plane is called the reflection plane.

By multiplying (6.10) by ~n we obtain the following expression for χ

(~t (in), ~n)

C
− (~t (r), ~n)

C
= χ→ cosϕin

C
− cosϕr

C
= χ .

From the eikonal equation (∇τ)2 = 1/C2 we derive

1

C2
− (∇τin, ~n)2 = (∇τin,~l1)2 + (∇τin,~l2)2 = (∇τr,~l1)2 + (∇τr,~l2)2 =

=
1

C2
− (∇τr, ~n)2

and then

1

C2
− (~t (in), ~n)2

C2
=

1

C2
− (~t (r), ~n)2

C2
⇒ 1− cos2 ϕin

C2
=

1− cos2 ϕr
C2

⇒
sinϕin
C

=
sinϕr
C

. (6.11)

Equation (6.11) is the second statement of Snell’s law.
Let us denote by C1 and C2 the velocity in the first and second media, respec-

tively, then for the transmitted wave we obtain quite similarly

sinϕin
C1

=
sinϕtr
C2

. (6.12)

If, for instance, C2 > C1 we may get a situation when ϕtr = π/2. In this case
sinϕin = C1/C2 and angle ϕin is called the critical angle. We shall see later that
in this case the transmitted wave cannot be described by the ray series.

6.2 Equations for the amplitudes, reflection and
transmission coefficients

For Dirichlet’s boundary condition we get

A
(r)
0

∣

∣

S
= −A(in)0

∣

∣

S
≡ RA(in)0

∣

∣

S
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where R = −1 and is called a reflection coefficient.
For Neumann’s condition we obtain

A
(r)
0

∣

∣

S
= − (∇τin, ~n)

(∇τr, ~n)
A
(in)
0

∣

∣

S
= A

(in)
0

∣

∣

S

because

(∇τin, ~n) =
1

C
(~t (in), ~n) = − 1

C
(~t (r), ~n) .

A more complicated system of equations appears in the case of a contact be-
tween two media

(A
(in)
0 +A

(r)
0 )
∣

∣

S
= A

(tr)
0

∣

∣

S
,

1

ρ1

(~t (in), ~n)

C1
(A
(in)
0 −A(r)0 )

∣

∣

S
=

1

ρ2

(~t (tr), ~n)

C2
A
(tr)
0

∣

∣

S
.

It can be written in the form














A
(tr)
0 −A(r)0 = A

(in)
0

cosϕtr
ρ2C2

A
(tr)
0 +

cosϕin
ρ1C1

A
(r)
0 =

cosϕin
ρ1C1

A
(in)
0

.

If the determinant of the system is not equal to 0, i.e.

∆ =
cosϕin
ρ1C1

+
cosϕtr
ρ2C2

6= 0

we obtain the unique solution of the system

A
(tr)
0 = 2A

(in)
0

1

∆

cosϕin
ρ1C1

= 2A
(in)
0

1

1 +
ρ1C1
ρ2C2

cosϕtr
cosϕin

,

A
(r)
0 = A

(in)
0

(

cosϕin
ρ1C1

− cosϕtr
ρ2C2

)

1

∆
=

= A
(in)
0

1− ρ1C1
ρ2C2

cosϕtr
cosϕin

1 +
ρ1C1
ρ2C2

cosϕtr
cosϕin

.

By introducing reflection R and transmission T coefficients through the formu-
las

A
(r)
0 = RA

(in)
0 and A

(tr)
0 = TA

(in)
0 ,

we get from the latter results

R =

1− ρ1C1
ρ2C2

cosϕtr
cosϕin

1 +
ρ1C1
ρ2C2

cosϕtr
cosϕin

, T =
2

1 +
ρ1C1
ρ2C2

cosϕtr
cosϕin

.
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Note that 1 +R = T .
Thus, to construct either the reflected or the refracted wave arising on the

interface, we have to find either the reflected or the refracted ray for each incident
ray and extend the eikonal continuously along it. This procedure is based on Snell’s
law - see equations (6.11), (6.12). To find the amplitude of the corresponding wave,
we have to know either the reflection or the transmission coefficient which is caused
by a particular boundary condition imposed on the interface.

6.3 Initial data for the geometrical spreading on
an interface

To complete the computational algorithm for the geometrical spreading, we have
to find the initial data for the solutions of the equations in variations along the
reflected and the refracted central rays of a ray tube. There are several ways to
approach the problem. We use a way based on the following conditions for the
eikonals on an interface S:

τin
∣

∣

S
= τr

∣

∣

S
= τtr

∣

∣

S
. (6.13)

The main idea of the approach can be described as follows.
In a vicinity of the central ray of a ray tube, the eikonal can be presented in

the form

τ(s, q1, q2) = τ0(s) +
1

2

2
∑

i,j=1

Γij(s)qiqj + · · · . (6.14)

If now we satisfy equations (6.13) for τin, τr and τtr, within accuracy up to the
second order term in a vicinity of the incident point on the interface S, we shall
find the relations among the matrices Γ.

But we know that Γ can be presented as PQ−1 and |detQ| is the geometrical
spreading. Then by transforming the Γ relations into P and Q relations, we shall
find the desired initial data for the matrices P and Q for the reflected and the
transmitted central rays at the point of incidence.

For the sake of simplicity, we consider this problem in detail for a 2D case.
Final results in a 3D case are presented in the last section of this chapter.

Instead of equation (6.14) we have for a 2D case

τ(s, q) = τ0(s) +
1

2
Γq2 + · · · (6.15)

and a similar expansion holds for τr and τtr but in local coordinates connected
with the reflected and transmitted central rays.

Suppose that for s = s∗ the incident central ray ~r0(s) intersects the interface
S at the point M∗. Point M∗ is called the point of incidence.

Let us introduce local coordinates ν, ζ at the point M∗ where ~ν is directed
along the normal to S and ~ζ is tangent to S at M∗, see Fig. 6.2.
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S
M∗

~t0(s∗)

~ζ

~ν
~̃t0(s∗)

ϕin

ϕr

~̃t0

~̃e

~t0

~e

Figure 6.2: Local coordinates in a vicinity of a point of incidence M∗ on the
interface S.

We shall suppose further that the interface is given in the form

ν =
1

2
Dζ2 + · · · (6.16)

because only second order terms will be involved in the calculations.
We shall have to calculate τ in a small vicinity of pointM∗, meaning that s−s∗

is small along with other coordinates q, ν, ζ.
Hence, we can re-expand τ in power series on s− s∗ as well

τ(s, q) = τ0(s∗) +
dτ0
ds

∣

∣

∣

∣

s∗

(s− s∗) +
d2τ0
ds2

∣

∣

∣

∣

s∗

(s− s∗)2
2

+
1

2
Γ(s∗)q

2 + · · · . (6.17)

The first step on our way consists of studying connecting formulas between s, q
and ν, ζ in a vicinity of M∗.

To this end let us expand ~r0(s)

~r0(s) = ~r0(s∗) +
d~r0
ds

∣

∣

∣

∣

s∗

(s− s∗) +
d2~r0
ds2

∣

∣

∣

∣

s∗

(s− s∗)2
2

+ · · · =

= ~r0(s∗) + ~t0(s∗)(s− s∗)− κ(s∗)
(s− s∗)2

2
~e(s∗) + · · ·

due to
d~e

ds
= κ(s)~t0 and

d~t0
ds

= −κ(s)~e .

Thus, for the radius-vector ~r we obtain from the above

~r = ~r0(s) + q~e(s) = ~r0(s∗) + ~t0(s∗)[(s− s∗) + q(s− s∗)κ(s∗) + · · · ] +

+ ~e(s∗)

[

q − (s− s∗)2
2

κ(s∗) + · · ·
]

. (6.18)

Evidently, at the same time we have

~r = ~r0(s∗) + ζ~ζ + ν~ν (6.19)
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where ~r0(s∗) corresponds to the position of the origin of coordinates ζ, ν. Now
from equations (6.18), (6.19) we obtain







ls− s∗ + (s− s∗)qκ(s∗) + · · · = ζ(~ζ,~t0(s∗)) + ν(~ν,~t0(s∗)) ≡ ε1

q − (s− s∗)2
κ(s∗)

2
+ · · · = ζ(~ζ,~e(s∗)) + ν(~ν,~e(s∗)) ≡ ε2

(6.20)

where by ε1 and ε2 we denote the right-hand sides in the above equations.

Bearing our aim in mind, we need to know s− s∗ and q as functions of ζ and
ν, so we have to solve the system (6.20) with respect to s− s∗ and q for small ε1
and ε2.

It is clear, that in the first approximation s − s∗ ' ε1 and q ' ε2, so we may
consider

s− s∗ = ε1 + δ2 ,

q = ε2 + γ2 ,
(6.21)

where δ2 and γ2 contain the second order terms which have to be found. By
inserting equation (6.21) into the system (6.20) we obtain after some algebra

δ2 = −κ(s∗)ε1ε2 and γ2 =
1

2
κ(s∗)ε

2
1

and, eventually, we get







s− s∗ = ε1 − κ(s∗)ε1ε2 + · · ·
q = ε2 +

1
2κ(s∗)ε

2
1 + · · ·

. (6.22)

Let us now come back to expansion (6.17) for τ . As we have q only in square,
we may save for q the first order terms in equation (6.22) while for s − s∗ we
have to save the second order terms as well. Then, according to equation (6.16),
the coordinate ν is of a second order, so we can simplify the right-hand sides of
equations (6.22) on the interface S.







s− s∗ = ζ (~ζ,~t0(s∗)) +
1
2D ζ2 (~ν,~t0(s∗))−κ(s∗) ζ2 (~ζ,~t0(s∗)) (~ζ,~e(s∗))+ · · ·

q = ζ
(

~ζ,~e(s∗)
)

+ · · ·
(6.23)

The system (6.23) is precisely the connecting formulas between the coordinates
(s, q) and (ζ, ν) we are looking for. The connecting formulas have already been
computed on the interface S by substituting ν = 1

2Dζ
2.

Now we are able to accurately calculate the eikonal τ on the interface up to
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the second order terms

τ(s, q)
∣

∣

S
= τ0(s∗) +

dτ0
ds

∣

∣

∣

∣

s∗

[

ζ
(

~ζ,~t0(s∗)
)

+ ζ2
(

1

2
D(~ν,~t0(s∗))−

− κ(s∗)
(

~ζ,~t0(s∗)
)

(~ζ,~e(s∗))
)]

+
d2τ0
ds2

∣

∣

∣

∣

s∗

1

2
ζ2 (~ζ,~t0(s∗))

2 +

+
1

2
Γ(s∗)ζ

2 (~ζ,~e(s∗))
2 + · · · = (6.24)

= τ0(s∗) + ζ
dτ0
ds

∣

∣

∣

∣

s∗

(~ζ,~t0(s∗)) + ζ2

{

Γ(s∗)
(~ζ,~e(s∗))

2

2
+

+
d2τ0
ds2

∣

∣

∣

∣

s∗

(~ζ,~t0(s∗))
2

2
− κ(s∗)(~ζ,~t0(s∗))(~ζ,~e(s∗))

dτ0
ds

∣

∣

∣

∣

s∗

+

+ D
(~ν,~t0(s∗))

2

dτ0
ds

∣

∣

∣

∣

s∗

}

+ · · · .

Let us then carry out similar calculations for the refracted and the reflected
central rays and the corresponding eikonals. But, in fact, we may write the final
results down based on equations (6.23) and (6.24) because the computations are
quite similar.

Let us supply by˜all terms corresponding to the reflected (or refracted) central
ray, so that, for instance, q̃, s̃ are the new ray centered coordinates. Based on
formulas (6.23), the corresponding equations for coordinates q̃ and s̃ − s∗ can be
written immediately

q̃ = ζ (~ζ(s∗), ~̃e(s∗)) + · · · , (6.25)

s̃− s∗ = ζ (~ζ, ~̃t0(s∗)) + ζ2
[

D

2
(~ν, ~̃t0(s∗))− κ̃(s∗)(~ζ, ~̃t0(s∗))(~ζ, ~̃e(s∗))

]

+ · · · .

Accordingly, either for the reflected or refracted eikonal τ̃(s̃, q̃) we get

τ̃(s̃, q̃)
∣

∣

S
= τ̃0(s∗) + ζ

dτ̃0
ds̃

∣

∣

∣

∣

s∗

(~ζ, ~̃t0(s∗)) + ζ2
{

Γ̃(s∗)
1

2
(~ζ, ~̃e(s∗))

2+

+
d2τ̃0
ds̃2

∣

∣

∣

∣

s∗

1

2
(~ζ, ~̃t0(s∗))

2 − κ̃(s∗)(~ζ, ~̃t0(s∗))(~ζ, ~̃e(s∗))
dτ̃0
ds

∣

∣

∣

∣

s∗

+

+ D
1

2
(~ν, ~̃t0(s∗))

dτ̃0
ds

∣

∣

∣

∣

s∗

}

+ · · · . (6.26)

Now we are able to accurately satisfy the basic equations τin
∣

∣

s
= τr

∣

∣

s
= τtr

∣

∣

s
up to the second order terms.

By comparing equations (6.24) and (6.26) we obtain for the main terms

τ̃0(s∗) = τ0(s∗) . (6.27)
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From the linear terms we get

dτ̃0
ds̃

∣

∣

∣

∣

s∗

(~ζ, ~̃t0(s∗)) =
dτ0
ds

∣

∣

∣

∣

s∗

(~ζ,~t0(s∗)) . (6.28)

The second order terms give rise to a relation between the matrices Γ̃(s∗) and
Γ(s∗)

Γ̃(s∗)
1

2
(~ζ, ~̃e(s∗))

2 +
d2τ̃0
ds̃2

∣

∣

∣

∣

s∗

1

2
(~ζ, ~̃t0(s∗))

2 − κ̃(s∗)(~ζ, ~̃t0(s∗))(~ζ, ~̃e(s∗))
dτ̃0
ds

∣

∣

∣

∣

s∗

+

D
1

2
(~ν, ~̃t0(s∗))

dτ̃0
ds

∣

∣

∣

∣

s∗

= Γ(s∗)
1

2
(~ζ,~e(s∗))

2 +
d2τ0
ds2

∣

∣

∣

∣

s∗

1

2
(~ζ,~t0(s∗))

2− (6.29)

dτ0
ds

∣

∣

∣

∣

s∗

κ(s∗)(~ζ,~t0(s∗))(~ζ,~e(s∗)) +D
1

2
(~ν,~t0(s∗))

dτ0
ds

∣

∣

∣

∣

s∗

.

Comments on equations (6.27) - (6.29).

Equation (6.27) means, quite naturally, that the eikonal has to be continuous
on the central rays.

Let us check that equation (6.28) is already satisfied due to Snell’s law. To
this end consider, for example, the case of refraction.

Introduce γin = π − ϕin and γtr = π − ϕtr, then, obviously,

(~t0(s∗), ~ζ) = cos(π − π

2
− γin) = sin γin .

Accordingly,

(~̃t0(s∗), ~ζ) = cos(
π

2
− γtr) = sin γtr

and, hence, equation (6.28) takes the form

1

C2(M∗)
sin γtr =

1

C1(M∗)
sin γin

which is precisely Snell’s law.

Consider further equation (6.29) in the case of a reflection. For that matter
see also Fig.6.2.

According to the orientation of the local coordinates chosen at the point of
incidence s = s∗ and the definition of the incident angle γin, we get the following
formulas for the scalar products involved in equation (6.29)

(~ζ, ~̃t0) = (~ζ,~t0) = sin γin

(~ν, ~̃t0) = −(~ν,~t0) = cos γin

(~ζ, ~̃e) = −(~ζ,~e) = cos γin .
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By inserting them into (6.29) we obtain

Γ̃(s∗)
1

2
cos2 γin +

d2τ̃0
ds̃2

∣

∣

∣

∣

s∗

1

2
sin2 γin − κ̃(s∗) sin γin cos γin

dτ̃0
ds

∣

∣

∣

∣

s∗

+

1

2
D cos γin

dτ̃0
ds

∣

∣

∣

∣

s∗

=

Γ(s∗)
1

2
cos2 γin +

d2τ0
ds2

∣

∣

∣

∣

s∗

1

2
sin2 γin − κ(s∗) sin γin(− cos γin)

dτ0
ds

∣

∣

∣

∣

s∗

+

1

2
D(− cos γin)

dτ0
ds

∣

∣

∣

∣

s∗

.

Then, after some algebra we get

Γ̃(s∗)
1

2
cos2 γin = Γ(s∗)

1

2
cos2 γin +

1

2
sin2 γin

(

d2τ0
ds2

∣

∣

∣

∣

s∗

− d2τ̃0
ds̃2

∣

∣

∣

∣

s∗

)

+

+
1

C(M∗)
(κ(s∗) + κ̃(s∗)) sin γin cos γin −D cos γin

1

C(M∗)
. (6.30)

Now let us take into account that Γ = P/Q, where P and Q are to be solutions
of the equations in variations, and let us derive the initial conditions for them on
the interface, i.e. at the point s = s∗ = s̃.

It is obvious, that all incident and reflected (refracted) rays remain to be con-
tinuous on an interface. In the ray centered coordinates they are described by
the functions q = q(s, γ) and q̃ = q̃(s̃, γ), respectively. It follows from equations
(6.23) and (6.25) that in order to achieve continuity for the rays on S, in the first
approximation, q and q̃ should satisfy the following condition

q̃

(~ζ, ~̃e(s∗))

∣

∣

∣

∣

∣

S

= ζ =
q

(~ζ,~e(s∗))

∣

∣

∣

∣

∣

S

.

Now, taking into account that Q and Q̃ are derivatives of q and q̃ with respect
to a ray parameter γ, we arrive at the following equation

Q̃(s∗) =
(~ζ, ~̃e(s∗))

(~ζ,~e(s∗))
Q(s∗) (6.31)

which provides a natural initial condition for Q̃(s̃) at the point s̃ = s∗ on the
interface S.

In the case of reflection, equation (6.31) yields

Q̃(s∗) = −Q(s∗) (6.32)

and therefore we get from equation (6.30) the following relationship between P̃
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and P

P̃ (s∗) = −P (s∗)− tan2 γin

(

d2τ0
ds2

∣

∣

∣

∣

s∗

− d2τ̃0
ds̃2

∣

∣

∣

∣

s∗

)

Q(s∗)− (6.33)

− 1

C(M∗)
2 tan γin(κ(s∗) + κ̃(s∗))Q(s∗) + 2D

1

cos γin
Q(s∗)

1

C(M∗)
.

Thus, equations (6.32) and (6.33) are the desirable initial data for Q̃(s), P̃ (s)
at the point of incidence on the interface. If we solve the equations in variations
along the reflected central ray with the initial data given by equations (6.32),
(6.33) we shall obtain the geometrical spreading on this ray.

It is convenient to present the final result in a matrix form
(

Q̃(s∗)

P̃ (s∗)

)

= M

(

Q(s∗)
P (s∗)

)

with the 2x2 matrix M having the following form

M =

(

−1 0
M21 −1

)

where

M21 =
2D

C(M∗) cos γin
− κ(s∗) + κ̃(s∗)

C(M∗)
2 tan γin − tan2 γin

(

d2τ0
ds2
− d2τ̃0

ds̃2

)∣

∣

∣

∣

s∗

.

Note that in the case of a tangent incidence γin = π/2 and cos γin = 0 and
therefore M21 becomes singular. That means that the ray method cannot be used
in this situation.

Remark. J-scalar product in 2D.

In case of a 2D problem, matrix J should be written as follows J =

(

0 1
−1 0

)

and column-vector X takes the form X(j) =

(

Qj

Pj

)

, j = 1, 2.

Let us make sure that the reflection matrix M is a symplectic matrix, i.e
MTJM = J. Indeed, for the left-hand side of the latter equation we obtain
consistently

MTJM =

(

−1 M21

0 −1

)(

0 1
−1 0

)(

−1 0
M21 −1

)

=

=

(

−M21 −1
1 0

)(

−1 0
M21 −1

)

=

(

M21 −M21 1
−1 0

)

=

=

(

0 1
−1 0

)

= J .

It follows from that fact that the J-scalar product of two arbitrary solutions
of the equations in variations is preserved for the reflections. It is not difficult to
see that this result holds true for refraction as well.
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6.4 Initial data for the geometrical spreading on
an interface in 3D: the main results

A 3D medium equation of the interface in a vicinity of the point of incidence can
be written in the following form

n =
1

2

2
∑

i,j=1

Dijζiζj + · · · , (6.34)

where n is the distance to the interface along the normal and ζ1, ζ2 are some
orthogonal coordinates on the tangent plane.

Instead of equation (6.17) we get, in this case, the following one

τ(s, q1, q2) = τ0(s∗) + (6.35)

+
dτ0
ds

∣

∣

∣

∣

s∗

(s− s∗) +
d2τ0
ds2

∣

∣

∣

∣

s∗

(s− s∗)
2

+
1

2

2
∑

i,j=1

Γij(s∗)qiqj + · · · .

The next step consists of deriving connecting formulas between two coordinate
systems: the local coordinates n, ζ1, ζ2 in a vicinity of the incident point on S and
the ray centered coordinates s, q1, q2. These formulas come out from the vector
equation

~r0(s) + q1~e1(s) + q2~e2(s) = ~r0(s∗) + n~n+ ζ1~ζ1 + ζ2~ζ2, (6.36)

after accurately expanding the left-hand side into a power series with respect to
s− s∗ up to the second order term.

After that we have to calculate τ on S for the incident, reflected and trans-
mitted rays. By comparing these formulas for the eikonals, we obtain relations
between the matrices Γ, Γ̃ at the incident point M∗. To get initial data for Q̃(s∗)
and P̃(s∗) we have to add the condition in which the rays from the ray tube are
to be continuous on the interface.

Final results can be presented in a matrix form.
Let us denote by X̃(j), j = 1, 2, solutions of the equations in variations on the

reflected (transmitted) central ray, then at the point s = s∗ we get

X̃(j)(s∗) = MX(j)(s∗) (6.37)

where under X(j)(s) we understand the solutions of the equations in variations
on the incident central ray, and M is a matrix 4x4. It contains derivatives of the
velocities and coefficients Dij from equation (6.34). It can be verified that M is a
symplectic matrix and therefore the J-scalar product is preserved for the reflected
and refracted rays, i.e.

(

JX̃(1), X̃(2)) = (JX(1), X(2)
)

.

Example. Reflection on a curved interface in a homogeneous medium; a 2D
case.
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Assume the interface is given by equation (6.16) in local coordinates in a vicin-
ity of the point of incidence

ν =
1

2
Dζ2 + · · · .

The initial conditions on the interface take the form
{

Q̃(s∗) = −Q(s∗)

P̃ (s∗) = −P (s∗) +
2D

C cos γin
Q(s∗)

due to d2τ0/ds
2 = d/ds(1/C) = 0 and κ ≡ 0 in a homogeneous medium.

The equations in variations are the following











d

ds
Q = CP

d

ds
P = 0

and











d

ds̃
Q̃ = CP̃

d

ds̃
P̃ = 0

.

In the case of a point source we had before P (0) = 1/C, Q(0) = 0 and therefore
Q(s) = s, P (s) = 1/C. The general solution for Q̃ and P̃ reads Q̃(s̃) = CP̃ (s̃ −
s∗) + Q̃(s∗); P̃ (s̃) = P̃ (s∗) = const.

Hence, on the interface we obtain

Q̃(s∗) = −Q(s∗) = −s∗
P̃ (s∗) = − 1

C
+

2D

C cos γin
s∗ .

Finally,

Q̃(s̃) =

(

−1 + 2D
s∗

cos γin

)

(s̃− s∗)− s∗

and for the geometrical spreading on the reflected central ray we obtain the fol-
lowing formula

J̃ = |Q̃(s̃)| =
∣

∣

∣

∣

−(s̃− s∗)− s∗ + 2D
s∗(s̃− s∗)
C cos γin

∣

∣

∣

∣

.



7
The ray method in elastodynamics

7.1 Plane waves in a homogeneous isotropic
medium

Plane waves can be regarded as the simplest solution of the equations of motion
which, at the same time, illuminate the main peculiarities of those equations in
elastic homogeneous and isotropic media.

Let us start with the equations of motion in the form

(λ+ µ)
∂

∂xj

∂Un
∂xn

+ µ
∂2Uj
∂xn∂xn

= ρ
∂2Uj
∂t2

, j = 1, 2, 3 , (7.1)

and seek a solution in the following form

Un = Ane
iϕ , ϕ = −ωt+ kmxm , (7.2)

where the vector-amplitude ~A is constant, and the phase function ϕ is a linear
function of all arguments. This implies that ω, k1, k2, k3 are also constant. It
follows from formula (7.2) that

∂Uj
∂xn

= Aje
iϕi

∂ϕ

∂xn
,

∂2Uj
∂xn∂xn

= Aje
iϕ(i)2

∂ϕ

∂xn

∂ϕ

∂xn
,

∂

∂xj

∂Un
∂xn

= Ane
iϕ(i)2

∂ϕ

∂xn

∂ϕ

∂xj
.

By inserting the latter results into equations (7.1) we obtain

(λ+ µ)
∂ϕ

∂xj

∂ϕ

∂xn
An + µ

∂ϕ

∂xn

∂ϕ

∂xn
Aj = ρ

∂ϕ

∂t

∂ϕ

∂t
Aj , j = 1, 2, 3 ,

89



90 The ray method in elastodynamics

and then
(λ+ µ)kjknAn + (µknkn − ρω2)Aj = 0 , j = 1, 2, 3 . (7.3)

Let us introduce an additional notation

Λ = µknkn − ρω2 = µ|~k|2 − ρω2 .

Then a linear system of equations (7.3) for vector-amplitude ~A can be written in
the matrix form

N ~A = 0 (7.4)

where

N =





(λ+ µ)k1k1 + Λ (λ+ µ)k1k2 (λ+ µ)k1k3
(λ+ µ)k2k1 (λ+ µ)k2k2 + Λ (λ+ µ)k2k3
(λ+ µ)k3k1 (λ+ µ)k3k2 (λ+ µ)k3k3 + Λ



 .

It is well known that a linear system of homogeneous equations (7.4) has a
nonzero solution if and only if detN = 0. We must then calculate detN.

Evidently, we can decompose detN as 23 determinants, but only the following
four of them do not vanish

detN = (λ+ µ)

∣

∣

∣

∣

∣

∣

k1k1 0 0
k2k1 Λ 0
k3k1 0 Λ

∣

∣

∣

∣

∣

∣

+ (λ+ µ)

∣

∣

∣

∣

∣

∣

Λ k1k2 0
0 k2k2 0
0 k3k2 Λ

∣

∣

∣

∣

∣

∣

+

+ (λ+ µ)

∣

∣

∣

∣

∣

∣

Λ 0 k1k3
0 Λ k2k3
0 0 k3k3

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

Λ 0 0
0 Λ 0
0 0 Λ

∣

∣

∣

∣

∣

∣

=

= (λ+ µ)k21Λ
2 + (λ+ µ)k22Λ

2 + (λ+ µ)k32Λ
2 + Λ3 = Λ3 + Λ2(λ+ µ)|~k|2 .

Hence, the characteristic equation detN = 0 takes the form

detN = Λ2(Λ + (λ+ µ)|~k|2) = 0

and gives rise to the following two possibilities.

1. A compressional wave:

Λ + (λ+ µ)|~k|2 = 0⇒ (λ+ 2µ)|~k|2 − ρω2 = 0⇒

⇒ |~k|2 =
ω2

α2
, α2 =

λ+ 2µ

ρ
, α =

√

λ+ 2µ

ρ
,

where α is the velocity of the compressional waves.
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2. Shear waves:

Λ2 = 0⇒ |~k|2 =
ω2

β2
, β2 =

µ

ρ
, β =

√

µ

ρ
,

where β is the velocity of the shear waves.

Next, we have to construct eigenvectors ~A for both cases 1) and 2).
Evidently, in case (1) we have only one eigenvector apart from the normalizing

factor. Suppose further that ~A is constructed. By multiplying equation (7.4) by
~A we obtain:

(N ~A, ~A) =
∑

n,m

NnmAnAm =
∑

n,m

((λ+ µ)knkm + Λδnm)AnAm

=
∑

n,m

[

(λ+ µ)knkm − (λ+ µ)|~k|2δnm
]

AnAm

= (λ+ µ)
[

(~k, ~A)(~k, ~A)− |~k|2( ~A, ~A)
]

= 0 .

Due to λ+ µ 6= 0 we get

(~k, ~A)(~k, ~A) = |~k|2| ~A|2 ,

which implies that the wave vector ~k and the amplitude ~A are collinear, i.e. ~k ↑↑ ~A
or ~k ↓↑ ~A.

Definition: We say, in this case, that the polarization of the compressional
plane wave coincides with its direction of propagation fixed by the wave vector ~k.

In case (2) we can construct two mutually orthogonal eigenvectors ~A due to
matrix N being symmetrical. This fact is well known in linear algebra.

Suppose now that ~A satisfies equation (7.4), then by multiplying it by ~A and
taking into account that Λ = 0, we obtain

(N ~A, ~A) =
∑

n,m

NnmAnAm = (λ+ µ)
∑

n,m

knkmAnAm = (λ+ µ)(~k, ~A)(~k, ~A) = 0

and therefore
(~k, ~A) = 0

which means that the polarization of the shear plane waves is orthogonal to the
direction of propagation.

Hence, in this case we get two shear plane waves having orthogonal polarization.
Definition: The slowness vector ~p is defined by the formula ~k = ω~p.
Due to |~k|2 = ω2/c2 we get |~p|2 = 1/c2.
Let us now formulate the main results of the section.
In a homogeneous isotropic medium three plane waves may propagate in any

direction fixed by the wave-vector ~k. The fastest one is a compressional wave, or P -
wave, its polarization being colinear with the direction of propagation. Two shear
plane waves, or S-waves, have the same velocity of propagation, but mutually
orthogonal polarization. Their polarization, in both cases, is orthogonal to the
direction of propagation.
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7.2 Reflection/transmission of plane waves on a
plane interface

Similar to the plane wave propagation in an unbounded medium, the plane wave
reflection/transmission on a plane interface is an important phenomenon not only
for tutorial reasons, but also for important applications in geophysics. It should
also be emphasized that the mathematical technique used for studying this phe-
nomenon, in the case of plane waves, underlies, in fact, investigations of corre-
sponding problems both in the ray theory and in the Gaussian Beam method.

If a medium under consideration contains interfaces some boundary conditions
should be imposed on them.

The most typical and widespread boundary conditions in the theory of elasticity
are the following:

1. an interface between two media,

2. a traction free surface.

In the first case, boundary conditions result usually from the wedded contact
of both parts of the medium separated by an interface. This contact prevents
diffusion of the material across the interface and the sliding of two solid media
along the separating interface. In the second case, we may consider a contact
between a solid medium and vacuum.

For the sake of simplicity, consider a traction free surface. We assume the
interface to be a plane. The corresponding boundary conditions can be precisely
satisfied by means of plane waves.

We consider the special Cartesian coordinates x1, x2, x3 with the origin located
on interface S and x1 directed along a normal to S.

We shall denote the normal to S by ~n following our former notations. The
incident plane wave ~U (in) is assumed to be given in the x1, x2, x3 coordinates.

The boundary conditions on a traction free interface S can be formulated as
follows. Traction ~T (~n) acting on the interface S with normal ~n is equal to zero,
i.e. Ti = τjinj = 0 for i = 1, 2, 3 where τji are elements of the stress tensor. In
our case ~n = (1, 0, 0) and therefore Ti = τ1i = 0. This means that

τ11|S = 0 , τ12|S = 0 , τ13|S = 0 . (7.5)

In order to satisfy equations (7.5) we suppose that two reflected waves appear on
S, namely, reflected S and P waves.

Let us introduce the following notations:

~U (in) = ~A(in)eiϕin for the incident wave,
~U (p) = ~P (r)eiϕrp for the reflected P -wave,
~U (s) = ~S(r)eiϕrs for the reflected S-wave,

where, of course, the phase functions ϕ are linear functions of their arguments, for
instance,

ϕin = −ωint+ kinj xj and so on.
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Reflected S and P wavesIncident wave

γin
γrp

γrs

x1

x2 S

Figure 7.1: Reflection of an incident wave on a traction free plane interface.

The total displacement vector ~U takes the form

~U = ~U (in) + ~U (p) + ~U (s) . (7.6)

For the stress tensor τkj we have the following formulas

τ11 = λ div ~U + 2µ
∂U1
∂x1

, τ1j = µ

(

∂U1
∂xj

+
∂Uj
∂x1

)

, j = 2, 3 . (7.7)

Now we have to insert equations (7.6) and (7.7) into equation (7.5). Note that
the equation of the interface S has the form

x1 = 0 . (7.8)

To this end let us look at any derivative of the displacement vector, for example,

∂

∂xm
U
(in)
j = A

(in)
j eiϕini

∂ϕin
∂xm

= ieiϕinA
(in)
j kinm .

Thus, after inserting such expressions into the boundary conditions we get eiϕ for
each wave and in order to satisfy equation (7.5), identically with respect to time
and coordinates x2, x3 on the interface, we have to impose

ϕin
∣

∣

x1=0
= ϕrp

∣

∣

x1=0
= ϕrs

∣

∣

x1=0
. (7.9)

It follows immediately from equation (7.9) that

1. ωin = ωrp = ωrs ≡ ω, i.e. circular frequency ω is preserved for the reflected
waves.
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2. The projection of the wave vector ~k onto the x2, x3- plane is the same for
each wave, i.e.

~kin − (~kin, ~n)~n = ~krp − (~krp, ~n)~n = ~krs − (~krs, ~n)~n (7.10)

giving rise to Snell’s law.

Indeed, ~kin,~krp,~krs and ~n belong to the same plane. Then, taking into account
that |~k| = ω/C, where Cin is the velocity of the incident wave, and

|~k|2 − (~k, ~n)2 = (~k,~i2)
2 + (~k,~i3)

2 ,

where ~i2,~i3 are unit vectors directed along x2, x3, respectively, we obtain from
equation (7.10)

ω2

C2in
sin2〈~kin, ~n〉 = ω2

α2
sin2〈~krp, ~n〉 = ω2

β2
sin2〈~krs, ~n〉 . (7.11)

In equations (7.11) we denote by 〈~k, ~n〉 the angle between the wave vector ~k and
the normal ~n to the interface. By introducing the incident angle γin and the
reflected angles γrp, γrs we can rewrite equations (7.11) as follows

sin γin
Cin

=
sin γrp
α

=
sin γrs
β

. (7.12)

Note that equations (7.12) hold true both for the incident P -wave and the S-wave.
To this end we have to replace velocity Cin by α or β, respectively.

7.3 Reflection coefficients

It is clear now that all exponents eiϕ can be canceled out in equations (7.5) and
therefore the equations lead to a linear system of algebraic equations for unknown
vector-amplitudes of the reflected waves.

Consider first

τ11 = λ div ~U + 2µ
∂U1
∂x1

.

After some mathematics we obtain

τ11
∣

∣

S
= 0→ λ

(

P (r)n k(rp)n + S(r)n k(rs)n

)

+ 2µ
(

P
(r)
1 k

(rp)
1 + S

(r)
1 k

(rs)
1

)

=

= −λA(in)n k(in)n − 2µA
(in)
1 k

(in)
1 .

Then, from τ1j
∣

∣

S
= 0 we get

P
(r)
1 k

(rp)
j + P

(r)
j k

(rp)
1 + S

(r)
1 k

(rs)
j + S

(r)
j k

(rs)
1 =−

(

A
(in)
1 k

in)
j +A

(in)
j k

(in)
1

)

, j = 2, 3.
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Using the scalar product, the first equation can be written in the form

λ
{(

~P (r),~k(rp)) + (~S(r),~k(rs)
)}

+ 2µ
(

P
(r)
1 k

rp)
1 + S

(r)
1 k

(rs)
1

)

=

= −λ
(

~A(in),~k(in)
)

− 2µA
(in)
1 k

(in)
1 ,

where, obviously,
(

~S(r),~k(rs)
)

= 0 for the shear wave.
Let us consider further a particular case when the incident wave is a P wave

and the incident plane coincides with the x1, x2 - plane, see Fig. 7.2.

~P (in) ~P (rp)

~S(rs)

x1

x2 S

Figure 7.2: Reflection of an incident P-wave on the traction free plane interface S
and the position of the polarization vectors.

Evidently, in this case we have

k
(rp)
3 = 0, k

(in)
3 = 0, k

(rs)
3 = 0, P

(r)
3 = 0, A

(in)
3 = 0 .

Hence, from τ13
∣

∣

S
= 0 we obtain S

(r)
3 k

(rs)
1 = 0 and therefore S

(r)
3 = 0 which means

precisely that the vector ~S(r) belongs to the plane of incidence too!
Now let us consider the system of linear equations in more details in order to

find the reflection coefficients.
It is convenient to re-denote ~A(in) by ~P (in). From τ11|S = 0 we get

λ
(

~P (r),~k(rp)
)

+ 2µ
(

P
(r)
1 k

rp)
1 + S

(r)
1 k

(rs)
1

)

= (7.13)

= −λ
(

~P (in),~k(in)
)

− 2µP
(in)
1 k

(in)
1 .

Then, equation τ13
∣

∣

S
= 0 is already satisfied.

Equation τ12
∣

∣

S
= 0 takes the form

P
(r)
1 k

(rp)
2 + P

(r)
2 k

(rp)
1 + S

(r)
1 k

(rs)
2 + S

(r)
2 k

(rs)
1 = (7.14)

= −
(

P
(in)
1 k

in)
2 + P

(in)
2 k

(in)
1

)
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Now let us introduce the incident angle γin and the reflected angles γrp and
γrs.

For P - waves we get:

γin = γrp
∣

∣~k(in)
∣

∣ =
∣

∣~k(rp)
∣

∣ =
ω

α
(

~P (in),~k(in)
)

=
∣

∣~P (in)
∣

∣

∣

∣~k(in)
∣

∣ (7.15)

P
(in)
1 =

∣

∣~P (in)
∣

∣ cos γin;P
(in)
2 =

∣

∣~P (in)
∣

∣ sin γin

k
(in)
1 =

∣

∣~k(in)
∣

∣ cos γin; k
(in)
2 =

∣

∣~k(in)
∣

∣ sin γin .

For the reflected P -wave we obtain

(

~P (r),~k(rp)
)

=
∣

∣~P (r)
∣

∣

∣

∣~k(rp)
∣

∣

P
(r)
1 = −

∣

∣~P (r)
∣

∣ cos γrp = −
∣

∣~P (r)
∣

∣ cos γin

k
(rp)
1 = −

∣

∣~k(rp)
∣

∣ cos γrp = −
∣

∣~k(rp)
∣

∣ cos γin (7.16)

P
(r)
2 =

∣

∣~P (r)
∣

∣ sin γrp =
∣

∣~P (r)
∣

∣ sin γin

k
(rp)
2 =

∣

∣~k(rp)
∣

∣ sin γrp =
∣

∣~k(rp)
∣

∣ sin γin .

For the reflected S - wave we get the following results:

S
(r)
1 =

∣

∣~S(r)
∣

∣ cos
(π

2
− γrs

)

=
∣

∣~S(r)
∣

∣ sin γrs

k
(rs)
1 = −

∣

∣~k(rs)
∣

∣ cos γrs (7.17)

S
(r)
2 =

∣

∣~S(r)
∣

∣ cos γrs

k
(rs)
2 =

∣

∣~k(rs)
∣

∣ sin γrs .

By inserting equations (7.15) - (7.17) into equation (7.13) we obtain

∣

∣~P (r)
∣

∣

∣

∣~k(rp)
∣

∣(λ+ 2µ cos2 γin)−
∣

∣~S(r)
∣

∣

∣

∣~k(rs)
∣

∣µ sin 2γrs = (7.18)

= −
∣

∣~P (in)
∣

∣

∣

∣~k(in)
∣

∣(λ+ 2µ cos2 γin)

From equation (7.14) we get

∣

∣~P (r)
∣

∣

∣

∣~k(rp)
∣

∣ sin 2γrp+
∣

∣~S(r)
∣

∣

∣

∣~k(rs)
∣

∣ cos 2γrs=
∣

∣~P (in)
∣

∣

∣

∣~k(in)
∣

∣ sin 2γin . (7.19)

Thus we arrive at the linear system of algebraic equations with determinant ∆
being equal to

∆ =
∣

∣~k(rp)
∣

∣

∣

∣~k(rs)
∣

∣

[

(λ+ 2µ cos2 γin) cos 2γrs + µ sin 2γrs sin 2γrp
]

=

=
ω2

αβ

[

(λ+ 2µ cos2 γin) cos 2γrs + µ sin 2γrs sin 2γrp
]

.
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By solving the linear system of equations (7.18) and (7.19) with respect to ~P (r)

and ~S(r) we obtain the following results

∣

∣~P (r)
∣

∣ = Rpp

∣

∣~P (in)
∣

∣ ;
∣

∣~S(r)
∣

∣ = Rsp

∣

∣~P (in)
∣

∣ , (7.20)

where Rpp and Rsp are called the reflection coefficients and

Rpp =
ω2

∆αβ

[

µ sin 2γin sin 2γrs − (λ+ 2µ sin2 γin) cos 2γrs
]

,

Rsp =
ω2

∆α2
2(λ+ µ) sin 2γin .

(7.21)

Thus, we observe that the traction free plane interface being impinged by a plane
P wave gives rise to two reflected plane P and S waves. They jointly and exactly
satisfy the boundary conditions on the interface. Clearly, the reflected P and
S-waves are uniquely constructed.

To summarize the final results let us introduce the following definitions:

a) The shear wave polarized in the plane of incidence is called SV - wave (its
polarization vector is on the vertical plane, i.e. V - plane).

b) The shear wave polarized perpendicularly to the plane of incidence is called
SH - wave (its polarization is on the horizontal plane, i.e. H - plane).

Free surface reflection coefficients can be listed as follows

SH → SH, no critical incidence.

P → P and P → SV,no critical incidence.

SV → SV and SV → P, critical incidence can occur.

Apparently, the procedure described above can be extended to other boundary
conditions almost straightforward, though it will require bulkier calculations.

7.4 Basic equations of the ray method in elasto-
dynamics

Similarly to the wave equation, we can develop the ray theory in elastodynamics
as an extension to the theory of plane wave propagation in homogeneous medium
applied to a heterogeneous but slowly varying one. In the latter case we suppose
that the characteristics of the elastic medium remain to be almost constant on
the wavelength interval in all directions. Apparently, this has a heuristic rather
than precise mathematical sense, but it allows us to understand more clearly the
calculations necessary for deriving the basic equations of the ray theory.

We consider below an inhomogeneous but isotropic medium. The elastic pa-
rameters ρ, λ, µ are supposed to be smooth functions of the coordinates.
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The elastodynamic equations for the displacement vector ~U read

(λ+ µ)
∂2Uj
∂xi∂xj

+ µ
∂2Ui
∂xj∂xj

+
∂λ

∂xi

∂Uj
∂xj

+
∂µ

∂xj

(

∂Ui
∂xj

+
∂Uj
∂xi

)

= ρ
∂2Ui
∂t2

, (7.22)

i = 1, 2, 3.

If we take into account that

[

∇µ, rot ~U
]

i
=

∂µ

∂xj

∂Uj
∂xi
− ∂µ

∂xj

∂Ui
∂xj

then we can present the equations in the following vectorial form

(λ+ µ)∇ div ~U + µ∆~U +∇λ div ~U + [∇µ, rot ~U ] + 2(∇µ,∇)~U = ρ
∂2~U

∂t2
. (7.23)

In the case of a harmonic in time wave field, or in the case of the ray method
in the frequency domain, we seek a solution of the elastodynamic equations in the
form

~U = ~Ae−iω(t−τ) , i2 = −1 , (7.24)

where ~A is the amplitude and τ is the eikonal.
Unlike the case of homogeneous media we cannot expect the amplitude ~A and

the eikonal τ to be a constant and a linear function of the arguments xj , j = 1, 2, 3,
respectively. Therefore for derivatives of the displacement vector (7.24) we get

∂Uk
∂xj

=
∂

∂xj
Ake

−iω(t−τ) = e−iω(t−τ)
[

iω
∂τ

∂xj
Ak +

∂Ak

∂xj

]

,

∂2Uk
∂xj∂xl

= e−iω(t−τ)
[

−ω2 ∂τ
∂xl

∂τ

∂xj
Ak + iω

(

∂τ

∂xl

∂Ak

∂xj
+

∂τ

∂xj

∂Ak

∂xl
+

+
∂2τ

∂xl∂xj
Ak

)

+
∂2Ak

∂xl∂xj

]

.

By inserting expression (7.24) into the elastodynamic equations (7.22) and by
canceling the exponents, we arrive at the following equality

− ω2
{

(λ+ µ)
∂τ

∂xk

∂τ

∂xj
Aj + µ

∂τ

∂xj

∂τ

∂xj
Ak

}

+

+ iω

{

(λ+ µ)

(

∂τ

∂xk

∂Aj

∂xj
+

∂τ

∂xj

∂Aj

∂xk
+

∂2τ

∂xk∂xj
Aj

)

+

+ µ

(

2
∂τ

∂xj

∂Ak

∂xj
+

∂2τ

∂xj∂xj
Ak

)

+
∂λ

∂xk

∂τ

∂xj
Aj +

+
∂µ

∂xj

(

∂τ

∂xj
Ak +

∂τ

∂xk
Aj

)}

+

+

{

(λ+ µ)
∂2Aj

∂xk∂xj
+ µ

∂2Ak

∂xj∂xj
+

∂λ

∂xk

∂Aj

∂xj
+

∂µ

∂xj

(

∂Ak

∂xj
+
∂Aj

∂xk

)}

=

= −ω2ρAk , k = 1, 2, 3 .
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By gathering the terms of the same order with respect to ω, we can present
the latter equations as follows

−ω2Nk( ~A) + iωMk( ~A) + Lk( ~A) = 0 , k = 1, 2, 3, (7.25)

where

Nk = (λ+ µ)
∂τ

∂xk

∂τ

∂xj
Aj +

[

µ

(

∂τ

∂xj

∂τ

∂xj

)

− ρ
]

Ak ,

Mk( ~A) = (λ+ µ)

(

∂τ

∂xk

∂Aj

∂xj
+

∂τ

∂xj

∂Aj

∂xk
+

∂2τ

∂xk∂xj
Aj

)

+

+ µ

(

2
∂τ

∂xj

∂Ak

∂xj
+

∂2τ

∂xj∂xj
Ak

)

+
∂λ

∂xk

∂τ

∂xj
Aj +

+
∂µ

∂xj

(

∂τ

∂xj
Ak +

∂τ

∂xk
Aj

)

,

and

Lk = (λ+ µ)
∂2Aj

∂xk∂xj
+ µ

∂2Ak

∂xj∂xj
+

∂λ

∂xk

∂Aj

∂xj
+

∂µ

∂xj

(

∂Ak

∂xj
+
∂Aj

∂xk

)

.

Next, let us present the amplitude ~A in equation (7.24) as an asymptotic series

~A =
∞
∑

n=0

~un
(iω)n

(7.26)

and insert it into equations (7.25) for the amplitude. Due to the fact that Nk,
Mk, Lk, k = 1, 2, 3, in equation (7.25) are linear operators we can present the final
result in the following form

∞
∑

m=−2

Nk(~um+2)

(iω)m
+

∞
∑

m=−1

Mk(~um+1)

(iω)m
+

∞
∑

m=0

Lk(~um)

(iω)m
= 0 . (7.27)

Indeed, for example, the corresponding calculations for the operator Nk are
the following

−ω2Nk

(

∞
∑

n=0

~un
(iω)n

)

=

∞
∑

n=0

(iω)2
Nk(~un)

(iω)n
=

=

∞
∑

n=0

Nk(~un)

(iω)n−2
=

∞
∑

m=−2

Nk(~um+2)

(iω)m
.

By collecting terms with equal powers of iω in equation (7.27) and by equating
them to zero we arrive at the recurrent system of equations

Nk(~uo) = 0 ,

Nk(~u1) +Mk(~uo) = 0 , (7.28)

Nk(~um+2) +Mk(~um+1) + Lk(~um) = 0 , m = 0, 1, 2, . . . , k = 1, 2, 3.
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In principle, equations (7.28) can be solved step by step and we can construct
an arbitrary finite number of terms in the asymptotic series (7.26). Unfortunately,
corresponding formulas for ~um are given implicitly and that causes difficulties in
their applications. It should also be noted that the mathematical procedure for
solving equations (7.28) possesses the following specific property. The first equa-
tion in (7.28) is actually a homogeneous system of linear algebraic equations with
respect to the coordinates of vector ~uo and we look for a nontrivial solution of
it. Suppose it is solved. The second equation then is already a non-homogeneous
system and we have to solve it in this case when the corresponding homogeneous
system has a non-zero solution. But it is known in linear algebra that the neces-
sary and sufficient condition for this reads (in case the main matrix of the system
is symmetrical): the right-hand side of the non-homogeneous system must be or-
thogonal to the solutions of the corresponding homogeneous system. It is precisely
this condition that gives rise to the transport equation. This property summarizes
all successive equations in (7.28).

7.5 The eikonal equation

Consider first the following equation

Nk(~uo) = 0 , k = 1, 2, 3. (7.29)

Being a linear system of homogeneous algebraic equations, it can be presented
in the matrix form

N~uo = 0 ,

where N is the following 3x3 matrix

Nkj = (λ+ µ)
∂τ

∂xk

∂τ

∂xj
+
(

µ(∇τ)2 − ρ
)

δkj .

Hence, equations (7.29) will have a non-zero solution if and only if detN = 0.
By denoting by Λ the following expression Λ = µ(∇τ)2 − ρ we get (compare with
equations (7.4)!)

detN =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(λ+ µ)
∂τ

∂x1

∂τ

∂x1
+ Λ (λ+ µ)

∂τ

∂x1

∂τ

∂x2
(λ+ µ)

∂τ

∂x1

∂τ

∂x3

(λ+ µ)
∂τ

∂x2

∂τ

∂x1
(λ+ µ)

∂τ

∂x2

∂τ

∂x2
+ Λ (λ+ µ)

∂τ

∂x2

∂τ

∂x3

(λ+ µ)
∂τ

∂x3
∂τ
∂x1

(λ+ µ)
∂τ

∂x3

∂τ

∂x2
(λ+ µ)

∂τ

∂x3

∂τ

∂x3
+ Λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

= Λ3 + Λ2

[

(λ+ µ)

(

∂τ

∂x1

)2

+ (λ+ µ)

(

∂τ

∂x2

)2

+ (λ+ µ)

(

∂τ

∂x3

)2
]

=

= Λ2(Λ + (λ+ µ)(∇τ)2
)

.
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Thus, equation detN = 0 leads to the following possibilities.
1) Compressional waves:

Λ + (λ+ µ)(∇τ)2 = (λ+ 2µ)(∇τ)2 − ρ = 0

and

(∇τ)2 =
1

a2
, a2 =

λ+ 2µ

ρ
. (7.30)

2) Shear waves:

Λ = µ(∇τ)2 − ρ = 0⇒ (∇τ)2 =
1

b2
, b2 =

µ

ρ
. (7.31)

Thus, similarly to the case of plane waves in homogeneous media we get two
velocities a and b for compressional and shear waves, respectively. But unlike that
case, in inhomogeneous media we obtain a partial differential equation (7.30) or
(7.31) for the eikonal τ .

7.6 Transport equations

Transport equations for the main term ~uo of the ray series arise from the second
equations in (7.28)

Nk(~u1) = −Mk(~uo) , k = 1, 2, 3. (7.32)

Further, it is convenient to write down operator Mk in the vectorial form. If
we put, as usual, ~M( ~A) = Mk( ~A)~ik, where ~ik, k = 1, 2, 3 are the basis vectors of
the Cartesian coordinates, then after some mathematics we obtain

~M( ~A) = (λ+ µ)
{

∇τ div ~A+∇(∇τ, ~A)
}

+ µ
[

2(∇τ,∇) ~A+ ∆τ ~A
]

+

+∇λ(∇τ, ~A) + (∇µ,∇τ) ~A+ (∇µ, ~A)∇τ , (7.33)

or

~M( ~A) = (λ+ µ)
[

∇τ div ~A+∇( ~A,∇τ)
]

+ µ∆τ ~A+ 2µ(∇τ,∇) ~A+

+∇λ(∇τ, ~A) + [∇µ, [∇τ, ~A]] + 2(∇µ,∇τ) ~A . (7.34)

Compressional waves.
In this case we may seek the amplitude ~A in the form

~A ≡ ~uo = ϕoa∇τ , (7.35)

where a =

√

λ+ 2µ

ρ
is the velocity of P-waves.

Further, we need to use the following auxiliary formulas:

div ~A = ϕoa∆τ + ϕo(∇a,∇τ) + a(∇ϕo,∇τ) ,
∇(∇τ, ~A) = ∇

(ϕo
a

)

,

(∇τ,∇) ~A = a(∇τ,∇ϕo)∇τ + ϕo(∇τ,∇a)∇τ +
1

2
ϕoa∇

(

1

a2

)

.
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One can verify them by inserting equation (7.35) for amplitude ~A into the
left-hand sides of the latter equations.

Now let us check that ~uo given by formula (7.35) satisfies the homogeneous
equations N~uo = 0. Indeed, by inserting ~uo into equations (7.29) we consistently
obtain

Nk(~uo) = ϕoa

3
∑

n=1

[

(λ+ µ)
∂τ

∂xk

∂τ

∂xn
+ Λδkn

]

∂τ

∂xn
=

= ϕoa

[

(λ+ µ)
∂τ

∂xk
(∇τ)2 + Λ

∂τ

∂xk

]

=

= ϕoa
∂τ

∂xk

[

(λ+ µ)(∇τ)2 + Λ
]

= 0, k = 1, 2, 3,

due to Λ = −(λ+ µ)(∇τ)2 in the case under consideration.
Therefore for that non-homogeneous system of equations (7.32) admitting a

solution with respect to ~u1, we must impose the following equation of orthogonality
( ~M(~uo), ~uo) = 0, which is equivalent to the following

(

~M(~uo),∇τ
)

= 0 . (7.36)

Then, by inserting the amplitude ~uo in the form (7.35) into equation (7.34)
and multiplying it by ∇τ , we get

(

~M(~uo),∇τ
)

= (λ+ µ)
[

(∇τ)2
{

ϕoa∆τ + ϕo(∇a,∇τ) + a(∇ϕo,∇τ)
}

+
(

∇ϕo
a
,∇τ

)]

+ µ∆τϕoa(∇τ)2+

+ 2µ

[

a(∇τ,∇ϕo)(∇τ)2 + ϕo(∇τ,∇a)(∇τ)2 +
1

2
ϕoa

(

∇ 1

a2
,∇τ

)]

+

+ (∇λ,∇τ)ϕoa(∇τ)2 + 2(∇µ,∇τ)ϕoa(∇τ)2 .

Finally, taking into account that (∇τ)2 = 1/a2 we obtain the following result

(

~M(~uo),∇τ
)

= (λ+ 2µ)
ϕo
a

∆τ +
2

a
(∇ϕo,∇τ)(λ+ 2µ) +

ϕo
a

(

∇τ,∇(λ+ 2µ)
)

=

=
1

a

{

2(∇τ,∇ϕo)a2ρ+ a2ρϕo∆τ + ϕo(∇τ,∇a2ρ)
}

due to λ+ 2µ = a2ρ.
Now the transport equation for ϕo follows from (7.36) and takes the form

2(∇τ,∇ϕo)a2ρ+ a2ρϕo∆τ + ϕo(∇τ,∇a2ρ) = 0 . (7.37)

As a final step let us seek a scalar amplitude ϕo in the form

ϕo =
1

√

a2ρ
ϕ̃o .
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Then we get

∇ϕo =
1

√

a2ρ
∇ϕ̃o −

1

2

ϕ̃o
(a2ρ)3/2

∇a2ρ

and by inserting the latter formula in equation (7.37) we obtain

2
√

a2ρ (∇τ,∇ϕ̃o)−
ϕ̃o
√

a2ρ
(∇a2ρ,∇τ) +

√

a2ρ ϕ̃o∆τ +
ϕ̃o
√

a2ρ
(∇τ,∇a2ρ) = 0 .

Now it follows from the above that ϕ̃o has to be a solution of the equation

2(∇τ,∇ϕ̃o) + ϕ̃o∆τ = 0 , (7.38)

which is exactly the same as we had in the case of the wave equation!
We know that a solution of the transport equation (7.38) can be written in the

form

ϕ̃o =
ψo(α, β)
√

1
aJ

, J =
1

a

∣

∣

∣

∣

D(x1, x2, x3)

D(τ, α, β)

∣

∣

∣

∣

,

where τ, α, β are the ray coordinates and J is the geometrical spreading of a ray
tube.

Shear waves.
Let us seek amplitude ~uo in the form

~uo = B~g (1) + C~g (2) , (7.39)

where B and C are some unknown scalar functions and ~g (k), k = 1, 2, are mutually
orthogonal unit vectors. Note that both of them are orthogonal to ∇τ , i.e.

(

∇τ,~g (k)
)

= 0 , k = 1, 2. (7.40)

It follows immediately from here that both B~g (1) and C~g (2) satisfy the ho-
mogeneous equations (7.28). Indeed, in the case under consideration Λ = 0 and
therefore

Nk

(

~g (j)
)

= (λ+ µ)
∂τ

∂xk

(

∇τ,~g (j)
)

= 0 , k = 1, 2, 3, j = 1, 2.

This time we must impose two conditions of orthogonality
(

~M(~uo), ~g
(k)
)

= 0,
k = 1, 2, in order to make the non-homogeneous system (7.32) a solvable one with
respect to ~u1.

By using formula (7.33) for ~M( ~A) and multiplying it by ~g (k) we get

(

~M( ~A), ~g (k)
)

= 2µ
(

(∇τ,∇) ~A,~g (k)
)

+ ∆τ
(

~A,~g (k)
)

+
(

∇µ,∇τ
)(

~A,~g (k)
)

.

Then by inserting ~A = ~uo into the latter equations we obtain
(

~M( ~A), ~g (1)
)

= 2µ(∇τ,∇B) + ∆τBµ+ (∇τ,∇µ)B + (7.41)

+ 2µ
[

B
(

(∇τ,∇)~g (1), ~g (1)
)

+ C
(

(∇τ,∇)~g (2), ~g (1)
)]

,
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and
(

~M( ~A), ~g (2)
)

= 2µ(∇τ,∇C) + µ∆τC + (∇µ,∇τ)C + (7.42)

+ 2µ
[

B
(

(∇τ,∇
)

~g (1), ~g (2)) + C
(

(∇τ,∇
)

~g (2), ~g (2))
]

.

Let us consider in more details the following operator

(∇τ,∇) =
∂τ

∂xj

∂

∂xj
.

If ~t is a tangent vector to a ray of unit length and s is the arc length along the
ray, then we have

(∇τ,∇) =

(

~t

b
,∇
)

=
1

b
(~t,∇) =

1

b

d

ds
,

where b is the shear wave velocity and d/ds is derivative along the ray. Hence,
in equations (7.41) and (7.42) derivatives of vectors ~g (k), k = 1, 2, along the ray
appear, i.e. we have to calculate (d/ds)~g (k), k = 1, 2.

Suppose, we choose vectors ~g (k) as follows

~g (1) = ~e1 , ~g (2) = ~e2 ,

where ~e1, ~e2 are unit vectors of the ray centered coordinates. In this case

d

ds
~g (m) =

d

ds
~em = κm~t , κm =

1

b

∂b

∂qm

∣

∣

∣

∣

q1=q2=0

,m = 1, 2,

and formulas (7.41) and (7.42) take the form

(

~M( ~A), ~g (1)
)

=
(

~M( ~A), ~e1
)

= 2µ(∇τ,∇B) + µB∆τ + (∇τ,∇µ)B ,

(

~M( ~A), ~e2
)

= 2µ(∇τ,∇C) + µC∆τ + C(∇τ,∇µ) ,

and we obtain two independent transport equations of the same type

2(∇τ,∇B) +B∆τ + (∇τ,∇ lnµ)B = 0 ,

2(∇τ,∇C) + C∆τ + (∇τ,∇ lnµ)C = 0 .

By substituting B and C in the latter equations by

B =
B̃√
µ

and C =
C̃√
µ

(µ = ρb2)

we obtain the transport equations which coincide with the transport equation
derived in Chapter 1 for the scalar wave field

2(∇τ,∇B̃) + B̃∆τ = 0 ,

2(∇τ,∇C̃) + C̃∆τ = 0 .
(7.43)
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Finally, we obtain the following formulas for B̃ and C̃

B̃ =
ψ
(1)
o (α, β)
√

1

b
J

, C̃ =
ψ
(2)
o (α, β)
√

1

b
J

, J =
1

b

∣

∣

∣

∣

D(x1, x2, x3)

D(τ, α, β)

∣

∣

∣

∣

, (7.44)

where, in general, functions ψ
(1)
o and ψ

(2)
o are different.

Summary
In elastodynamics we have a family of P - rays propagating with velocity

a =
√

(λ+ 2µ)/ρ. The corresponding ray - method formula for P wave reads

~U =
ψo(α, β)
√

(1/a)J

eiω(τ−t)
√

a2ρ
a∇τ . (7.45)

Then, we also have a family of S - rays propagating with velocity b =
√

µ/ρ
and two shear waves

~U (1) =
ψ
(1)
o (α, β)

√

(1/b)J
√

b2ρ
eiω(τ−t)~e1 ,

~U (2) =
ψ
(2)
o (α, β)

√

(1/b)J
√

b2ρ
eiω(τ−t)~e2 .

(7.46)

Note that vectors ~e1, ~e2 of the ray centered coordinates seem to be more conve-
nient for describing polarization of the shear waves then the normal and binormal
to the ray, because the polarization vectors rotate with respect to the normal and
binormal while propagating along the ray. Apparently, we can construct a shear
wave of arbitrary polarization as a linear combination of ~U (1) and ~U (2) in equations
(7.46).

In order to apply formulas (7.45) and (7.46) we have to find appropriate values
for the functions ψo and here we face the problem of initial data for the ray series.
Within the frames of the leading (or main) term of the ray series this problem
can be solved quite easily by means of matching of asymptotics. But this requires
rather bulky mathematics even for the second term of the series in case of a point
source. For that matter see, for example, Babich and Kirpichnikova (1979).

7.7 Point sources; initial data for P and S waves

Consider now two types of point sources: the center of dilatation and the center
of rotation, which are described by the following formulas, respectively,

~F = −∇δ(M −Mo) and ~F = −rot (~l δ(M −Mo)) , (7.47)

where ~l is a constant vector of unit length. Both of the sources are widely used in
theoretical geophysics.
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Initial data, i.e. formulas for ψo, ψ
(1)
o , ψ

(2)
o , can be obtained by matching the

main terms of the ray series in a vicinity of the sources and the exact solutions of
corresponding problems for a homogeneous isotropic medium.

As a first step, we have to freeze the density ρ and Lame’s parameters λ, µ by
their values ρo, λo, µo at the source pointMo. Then we arrive at the elastodynamic
equations for a homogeneous isotropic medium

(λo + µo)∇(div ~U) + µo∆~U + ~f = ρo
∂2~U

∂t2
. (7.48)

Equation (7.48) can be rewritten in an equivalent form

(λo + 2µo)∇(div ~U)− µorot(rot ~U) + ~f = ρo
∂2~U

∂t2
(7.49)

if the following identity is used

∆~U = ∇(div ~U)− rot(rot ~U) .

In order to obtain appropriate problems for equations (7.48) or (7.49) we have
to consider the harmonic in time wave field and substitute the density of body
forces ~f by one of the point sources (7.47).

The center of dilatation.
In this case we have

~f = ∇δ(M −Mo) (7.50)

and seek a solution of equation (7.49) in the form

~U = e−iωt∇G , (7.51)

where G is a scalar function.
By inserting formulas (7.50) and (7.51) into (7.49) and taking into account

the well-known identity rot ∇G ≡ 0 we obtain the following equation for the
function G

∇
{

(λo + 2µo) div grad G+ ρoω
2G
}

= −∇δ(M −Mo) . (7.52)

Now this can be reduced to the point source problem for Helmholtz equation

∆G+
ω2

a2o
G = − 1

λo + 2µo
δ(M −Mo) , (7.53)

where a2o = (λo+2µo)/ρo. Note that Sommerfeld’s radiation conditions have to be
added to equation (7.53) so that an appropriate unique solution can be obtained.
The radiation conditions mean that G must contain only the wave emanating from
the source, with a suitable decline of its amplitude with an increasing distance to
the source. Thus, we finally obtain from (7.53) that

G =
1

4πR(λo + 2µo)
exp

{

iω
R

ao

}

, (7.54)
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where R =
√

(x− xo)2 + (y − yo)2 + (z − zo)2. By inserting formula (7.54) into

(7.51) we obtain a desirable result for the displacement vector ~U

~U = e−iω(t−R/ao)
ω

4πa2oρo

(

i

aoR
− 1

ωR2

)

∇R . (7.55)

Due to ∇R = ~R/|~R|, where ~R = (x − xo)~i + (y − yo)~j + (z − zo)~k′ being the
radius-vector, formula (7.55) describes the compressional wave emanating from
the source. It has the form of a ray series, but it consists only of two terms. The
main term declines as R−1 and the second one as R−2.

Now let us come back to the ray-method formula (7.45) for P-wave. In a small
vicinity of the source, the rays are almost straight lines, therefore in the first
approximation we have

τ ∼ R

ao
, ao∇τ ∼

~R

|~R|
. (7.56)

Let angles θ and φ (0 ≤ θ ≤ π ; 0 ≤ φ < 2π) of the spherical coordinates be
the ray parameters, then for the geometrical spreading J we have

J ∼ s2 sin θ = R2 sin θ . (7.57)

By inserting approximate formulas (7.56) and (7.57) into equation (7.45), we
get

~U ' ψo(θ, φ)
√

(1/ao)R2 sin θ

exp
[

−iω
(

t− R
ao

)]

√

a2oρo

~R

|~R|
.

By comparing the latter formula with the first item in equation (7.55) we obtain
the following expression for ψo(θ, φ)

ψo =
iω

4π

√
sin θ

a
5/2
o
√
ρo

. (7.58)

Thus, the insertion of formula (7.58) into equation (7.45) completes the ray-

method expression for the displacement vector ~U in case of the center of dilatation
which can be used on an arbitrary but finite distance from the source.

The center of rotation.
Now we have

~f = rot
(

~l δ(M −Mo)
)

(7.59)

and seek a solution of elastodynamic equation (7.49) in the form

~U = e−iωtrot ~ψ (7.60)

with an unknown vector-function ~ψ. By inserting both (7.59) and (7.60) into
equation (7.49) we obtain consistently

rot {µo∆~ψ + ρoω
2 ~ψ} = −rot

(

~l δ(M −Mo)
)

,
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and

∆~ψ +
ω2

b2o
~ψ = − 1

µo
~l δ(M −Mo) , b2o = µo/ρo . (7.61)

Taking into account Sommerfeld’s radiation conditions (they must hold in this
case too!) we get from (7.61)

~ψ =
~l

4πµoR
exp{iωR/bo} . (7.62)

Due to

rot ~ψ =
1

4πµo

[

grad
eiωR/bo

R
, ~l

]

=
ω

4πµo

(

i

boR
− 1

ωR2

)

[

∇R,~l
]

eiωR/bo

we obtain the following expression for the displacement vector (7.60)

~U =
ω

4πµo

(

i

boR
− 1

ωR2

)

[

∇R,~l
]

exp [iω(R/bo − t)] . (7.63)

Note that the vector product [∇R,~l] vanishes if ∇R is collinear with the vector
~l. This means that the center of rotation does not irradiate along a straight
line fixed by the vector ~l. Polarization of the displacement vector ~U in (7.63) is

orthogonal to ∇R = ~R/|~R|.
Consider further the ray-method formulas (7.46) in a vicinity of the point

source. Apparently, equations (7.56) and (7.57) hold true in the case under con-
sideration if ao is replaced by the velocity bo. Let us set an initial orientation of
the unit vector ~e1 at the source point s = 0 by the formula

~e1
∣

∣

s=0
=

[

∇~R,~l
]

∣

∣

[

∇R,~l
]∣

∣

=

[

~R

|~R|
,~l

]

1
∣

∣

[

∇R,~l
]∣

∣

(7.64)

which is correctly defined when [∇R,~l ] 6= 0.

Then ~U (1) in equations (7.46) can be rewritten in the form

~U (1) ∼ ψ
(1)
o (θ, φ)

√

(1/bo)R2 sin θ
√

b2oρo

[∇R,~l ]
|[∇R,~l ]|

eiω(R/bo−t) . (7.65)

By comparing now expression (7.65) and the first term in equation (7.63) we
obtain the final result

ψ(1)o (θ, φ) =
iω

4π

√
sin θ

b
5/2
o
√
ρo

∣

∣

[

∇R,~l
]∣

∣ . (7.66)

Clearly, we must consider ψ
(2)
o (θ, φ) = 0 in this case.
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Remark.
Consider an unbounded homogeneous medium and assume for simplicity that

~f ≡ 0. In this case we can introduce Helmholtz’s potentials Θ and ~Ψ as follows

~U = grad Θ , ~U = rot ~Ψ .

By inserting these formulas into the elastodynamic equations (7.48) or (7.49),

we can reduce them to the independent equations for Θ and ~Ψ as shown above.
Then, in general, a solution of elastodynamic equations can be presented as the
superposition

~U = grad Θ + rot ~Ψ .

If, however, there is an interface separating two different homogeneous media then,
usually, both Θ and ~Ψ should be taken into consideration in order to satisfy bound-
ary conditions on the interface. So, in such cases, problems for Θ and ~Ψ cannot
be split.

7.8 The ray method in a medium with smooth
interfaces

If an inhomogeneous medium contains smooth interfaces, some boundary condi-
tions should be imposed on the interfaces. They involve, in general, conditions
for the total displacement vector and the stress tensor. In order to satisfy the
boundary conditions we should follow the rationale used in the theory of plane
wave propagation in elastodynamics. But this time we have to take into account
only the main terms, i.e. terms which contain the large parameter ω, if we work
with the leading term of the ray series. Normally, on the interface we obtain two
reflected and two transmitted elastic waves.

Let us consider a sequence of steps which should be taken to satisfy the bound-
ary conditions within a zero-order ray approximation.

Let us use the following notations

~Uin = ~Aine
iωτin for incident wave,

~U (p)r = ~Pre
iωτ (p)

r for reflected P wave,

~U (s)r = ~Sre
iωτ (s)

r for reflected S wave,

~U
(p)
tr = ~Ptre

iωτ
(p)
tr for transmitted P wave,

~U
(s)
tr = ~Stre

iωτ
(s)
tr for transmitted S wave,

by omitting everywhere the time-dependent multiplier exp{−iωt}.

1. If we have only one incident wave in medium 1, we have to employ both
reflected P and S waves. Hence, the total displacement vector in medium 1
reads

~U (1) = ~Uin + ~U (p)r + ~U (s)r .
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In medium 2 we obtain

~U (2) = ~U
(p)
tr + ~U

(s)
tr .

2. On the next step we have to gather the main terms of the stress tensor τjk.
To clarify the situation, let us look at a derivative of the displacement vector.
For example,

div ~U (1) = div
(

~Uin + ~U (p)r + ~U (s)r

)

=

= eiωτin [iω(∇τin, ~Ain) + div ~Ain] +

+ eiωτ
(p)
r

[

iω(∇τ (p)r , ~Pr) + div ~Pr
]

+

+ eiωτ
(s)
r

[

iω
(

∇τ (s)r , ~Sr
)

+ div ~Sr
]

.

It is clear now, that the large parameter ω appears as a multiplier if and only
if we differentiate the exponents, and amplitudes ~A, ~Sr, ~Pr are not differen-
tiated in the main terms, i.e. they may be considered as constants (compare
with plane waves in homogeneous media!).

Such terms like div ~A, div ~Pr, div ~Sr do not contain the large parameter ω
and because of that they may be omitted in the boundary conditions, if we
deal with the main term of the ray series. Thus, by introducing the wave
vector ~k through the formula ~k = ω∇τ , we can eventually deduce that the
leading terms of the stress tensor will be precisely the same as in case of
plane waves in a homogeneous medium. But unlike the latter case, they
have to be calculated on a curved interface in an inhomogeneous medium
and therefore they remain to be functions of a point on the interface.

3. By inserting the displacement vector and the stress tensor into the boundary
conditions we impose the following requirements on the eikonals

τin
∣

∣

S
= τ (p)r

∣

∣

S
= τ (s)r

∣

∣

S
= τ

(p)
tr

∣

∣

S
= τ

(s)
tr

∣

∣

S

which give rise to Snell’s law for the reflected and transmitted rays.

4. Now the exponents can be canceled from the boundary equations and we
arrive at a linear system of algebraic equations for the amplitudes of the
reflected and transmitted waves. Note that this system is precisely the same
which we had for the plane waves in homogeneous media with flat interfaces!
Hence, we can conclude now that the reflection and the transmission coeffi-
cients coincide with those known in the case of plane waves in homogeneous
media. But now they depend upon coordinates of the point of incidence on
the interface!
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7.9 Second term of the ray series and the problem
of validity of the ray theory

Let us derive the formula for the second term ~u1 of the ray series in the case
of P-waves. To this end we have to consider the second and the third equations
in (7.28).

We seek the second term in the following form

~u1 = ϕ1a∇τ + ~u
(o)
1 , (7.67)

where ~u
(o)
1 is supposed to be orthogonal to ∇τ . By inserting expression (7.67) into

the second equation (7.28) and taking into account that Nk(∇τ) = 0, k = 1, 2, 3,
we obtain

Nk

(

~u
(o)
1

)

= −Mk(~uo) . (7.68)

In order to derive the transport equation for ϕ1 we have to consider equation
(7.28) for ~u2. Now, to make this equation solvable with respect to ~u2 we must im-
pose the following condition of orthogonality of the right-hand side to the solution
of homogeneous equation

(

− ~M(~u1)− ~L(~uo) , ∇τ
)

= 0. (7.69)

Let us develop equations (7.68) and (7.69) by employing expressions for oper-

ators Nk and Mk (see section 7.4). As the mixed term ~u
(o)
1 is orthogonal to ∇τ

and Λ = −(λ + µ)/a2 in the case under consideration, we obtain the following
expression for it

~u
(o)
1 =

a2

λ+ µ
~M(~uo) . (7.70)

Note that the right-hand side of equation (7.70) is orthogonal to ∇τ . Indeed,
~uo = ϕoa∇τ and the transport equation for ϕo was derived from the equation of
orthogonality ( ~M(~uo),∇τ) = 0.

Consider further the scalar product ( ~M(~u1),∇τ). Taking formula (7.67) into
account we get

( ~M(~u1),∇τ) = ( ~M(ϕ1a∇τ),∇τ) + ( ~M(~u
(o)
1 ),∇τ) , (7.71)

where the first term gives rise to the left-hand side of the transport equation
for ϕ1 (see section 7.6). The second term in (7.71) should be regarded as an
inhomogeneous term for the transport equation.

By repeating the calculations in section 7.6, we get from the condition of or-
thogonality (7.69) the following equation for ϕ1

1

a

{

2(∇τ,∇ϕ1)a2ρ+a2ρϕ1∆τ+ϕ1(∇τ,∇a2ρ)
}

= −( ~M(~u
(o)
1 )+~L(~uo),∇τ). (7.72)
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Obviously, equation (7.72) is an inhomogeneous transport equation. By inte-
grating this equation by means of the procedure described in section 3.4, we arrive
at the final result

ϕ1=
1

√

a2ρ
√

1
aJ

{

ψ1(α, β)−
1

2

∫ τ

0

a2√
ρ

√

1

a
J( ~M(~u

(o)
1 ) + ~L(~uo),∇τ)dτ

}

, (7.73)

where ψ1(α, β) is a constant of integration, or initial value of ϕ1 at a point τ = 0.
Apparently, similar calculations can be carried out for S waves. A correspond-

ing expression for the second term will contain the mixed term as well. But in
that case the mixed term is collinear with ∇τ .

In order to study the possible behavior of the second term with respect to the
distance to a source let us explore the following particular case.

Consider a 3D homogeneous medium. Suppose we have initially a plane wave
front with varying amplitude along it. Let it coincide with the z, y-plane and
study its propagation along the x axis. A corresponding family of rays is formed
by straight lines parallel to the x axis. Let the ray parameters γ1, γ2 be the
coordinates on the y, z-plane, e.g. γ1 = y and γ2 = z, then the family of rays is
described by formulas

x = aτ, y = γ1, z = γ2 , (7.74)

where τ is the eikonal. It follows from equation (7.74) that

J =
1

a

∣

∣

∣

∣

D(x, y, z)

D(τ, γ1, γ2)

∣

∣

∣

∣

=
1

a
a = 1 .

According to equations (7.26) and (7.45) we get

~uo =
ψo(γ1, γ2)√

ρa
a∇τ =

ψo(y, z)√
ρa

~i . (7.75)

Thus, ~uo depends upon coordinates only because of function ψo which describes
the initial value of the amplitude.

Consider further the mixed term ~u
(o)
1 given by formula (7.70). For a homoge-

neous medium we deduce from equation (7.33)

~M( ~A) = (λ+ µ)
{

∇τ div ~A+∇(∇τ, ~A)
}

+ µ
[

2(∇τ,∇) ~A+ ∆τ ~A
]

. (7.76)

In the case under consideration τ = x/a which yields ∆τ = 0, (∇τ,∇) =
(1/a)(∂/∂x).

Then, taking into account that ~uo does not depend on x and by inserting ~uo
into equation (7.76) we obtain ~M(~uo) = [(λ+ µ)/(a

√
ρa)]∇ψo and therefore

~u
(o)
1 =

√

a

ρ
∇ψo =

√

a

ρ

(

∂ψo
∂y

~j +
∂ψo
∂z

~k

)

. (7.77)

Note that ∇ψo is orthogonal to the direction of propagation, i.e. to the x-axis.
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Thus, we come to the conclusion that if distribution of the amplitude along the
initial wave front is not uniform, i.e. ψo does depend upon the ray parameters,

the mixed term ~u
(o)
1 appears even in a homogeneous medium. In our particular

case it remains to be constant along each ray.
Consider now the integral in formula (7.73). By inserting expression (7.77)

into equation (7.76) we obtain

~M(~u
(o)
1 ) = (λ+ µ)∇τ

√

a

ρ
div ∇ψo ,

and therefore

( ~M(~u
(o)
1 ),∇τ) =

λ+ µ

a
√
ρa

∆ψo =
λ+ µ

a
√
ρa

(

∂2ψo
∂y2

+
∂ψo
∂z2

)

. (7.78)

For a homogeneous medium the expression for operator ~L( ~A) takes the form
(see section 7.4)

~L( ~A) = (λ+ µ)∇ div ~A+ µ∆ ~A . (7.79)

By inserting expression (7.75) for ~uo into equation (7.79) and taking into ac-
count that ~uo does not depend upon x we obtain

(

~L(~uo),∇τ
)

=
µ

a
√
ρa

∆ψo . (7.80)

Now we are able to derive the final formula for the first item of the second
term (7.67) of the ray series. Indeed, by inserting formulas (7.78), (7.80) into
equation (7.73) we obtain

ϕ1 =
1√
aρ

{

ψ1(γ1, γ2)−
1

2
a2∆ψoτ

}

(7.81)

where ∆ψo = ∂2ψo/∂y
2 + ∂2ψo/∂z

2 because ψo does not depend upon x - see
equation (7.75).

Based on the final formula (7.81) we arrive at the following conclusion: if the
distribution of the amplitude on the initial wave front is not uniform, and ∆ψo
does not equal to zero identically, the magnitude of the second term increases
proportionally to the distance from the initial wave front. According to the crite-
rion given in Chapter 1 we obtain a limitation to the validity of the ray method
formulas with respect to the distance, if the frequency is fixed, or with respect
to frequency, if the distance is fixed. But is this the only instance when the ray
method fails with an increasing distance to the source?

The following interpretation to the result described above can be given. Being
within the frames of the zero-order ray approximation, we can construct a beam of
the wave field which propagates along a straight line without spreading. Indeed,
in the case under consideration we have a family of rays parallel to the x-axis. By
varying the amplitude along the initial wave front, this ray field can be bounded
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in lateral directions. To this end ψo(γ1, γ2) should be identically equal to zero out
of some domain on the initial wave front.

Due to the fact that the energy propagates along the ray tubes and it has no
transversal diffusion, all energy of the initial wave field will remain in that beam.
And this beam does not spread in lateral directions at all because the geometrical
spreading is constant and independent of x - see equation (7.75)!

But such type of wave propagation phenomenon seems to be unrealistic and
incorrect from the physical point of view. Evidence of that exists in the ray theory
too but only if the second term of the ray series is taken into account! We can
conclude that the ray method fails in this particular case because it does not
properly describe the transversal diffusion of energy.

Let us dwell on another phenomenon related to the second term of the ray
series. The second term contains the so-called mixed term. For example: in case

of P-wave ~u
(o)
1 being orthogonal to ∇τ - see equation (7.67).

This mixed term is responsible for a de-polarization phenomenon, which con-
sists of the following. If, for instance, we take into account two terms of the ray
series for a P wave, its polarization will not be exactly parallel to the direction of
propagation. The same happens to the S waves.

Note that such type of de-polarization phenomenon can be obtained in a
slightly anisotropic but homogeneous medium. Therefore, by observing the de-
polarization phenomenon in real geophysical explorations we have to decide wheth-
er it is caused by anisotropy or it can be explained in the frames of inhomogeneous
but isotropic models.

In order to investigate this problem we need an algorithm for the computation
of the second term of the ray series. Thus the problem of computation of the
second term of the ray series is becoming rather an actual and important one.

An algorithm for computation of the second term based on ideas of the paraxial
ray theory has been developed in the paper by Kirpichnikova, Popov and Pšenč́ık
(1997). For more results of its application to the problem of validity of the ray
theory see Popov and Camerlynck (1996) and Popov and Oliveira (1997).



8
The Gaussian Beam method in
elastodynamics. The frequency

domain

8.1 Construction of a Gaussian beam

Consider an arbitrary ray in an inhomogeneous elastic medium, which we denote
by ~ro = ~ro(s), where s is the arc length along the ray.

Let us formulate the following problem.
Consider a vicinity of this ray ~ro(s) and let us try to construct an approximate

solution of elastodynamic equations which possesses the following properties

i) the solution should be concentrated in a vicinity of the central ray ~ro(s) and
decline quickly with an increasing distance to the central ray,

ii) the solution should not have any singularity along the ray.

From a first glance, it is not evident at all that such type of approximate
solutions could exist, but they were discovered in the 1960s by specialists in the
theory of gas lasers. Those solutions were implemented later for elastodynamic
equations by Kirpichnikova (1971) (for more details see the Introduction).

We shall consider only the main term of such approximate solutions because it
provides a significant simplification in their constructions.

P - Gaussian beams.
We know now that we can satisfy the elastodynamic equations (approximately

as ω →∞) by the following vector - function

~U = ~Aeiωτ =
ϕ̃o
√

a2ρ
eiωτa∇τ (8.1)
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if the eikonal τ satisfies the eikonal equation

(∇τ)2 =
1

a2
(8.2)

and ϕ̃o is a solution of the transport equation

2(∇τ,∇ϕ̃o) + ϕ̃o∆τ = 0 . (8.3)

According to our first statement (i) we may consider equations (8.2) and (8.3)
in a vicinity of a given central ray ~ro(s). To this end we use the ray centered
coordinates s, q1, q2 and seek the eikonal τ in the form

τ(s, q1, q2) = τo(s) +
1

2

2
∑

j,k=1

Γjk(s)qjqk + · · · . (8.4)

Accordingly, for ϕ̃o we consider

ϕ̃o(s, q1, q2) = ϕ̃00(s) + · · · . (8.5)

In order to construct the main term of a Gaussian beam we may restrict our-
selves to two terms in equation (8.4) and the first term in equation (8.5).

Now we can apply the results obtained in the paraxial ray theory.

Suppose we have two solutions X(1)(s) and X(2)(s) of the equations in varia-
tions

dqj
ds

=
∂H2
∂pj

,
dpj
ds

= −∂H2
∂qj

, j = 1, 2 ,

H = −h
a

√

1− a2(p21 + p22) = Ho(s) +H2 + · · · .

By means of these solutions we can construct two matrices 2 x 2

Q =

(

q
(1)
1 q

(2)
1

q
(1)
2 q

(2)
2

)

, P =

(

p
(1)
1 p

(2)
1

p
(1)
2 p

(2)
2

)

. (8.6)

If the detQ 6= 0, i.e. the matrix Q is not singular for all possible values of s, we
can construct a matrix Γ = PQ−1 which will satisfy Ricatti’s equation and hence
the eikonal (8.4) will be an approximate solution of the eikonal equation (8.2).

Accordingly, we obtain the following formula for the main term of expansion
(8.5) for the “amplitude” ϕ̃o,

ϕ̃oo(s) =
const

√

1

ao
detQ

, (8.7)
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and we finally arrive at the following approximate solution of the elastodynamic
equations in a vicinity of the central ray ~ro(s)

~U =
const

√

1

ao
detQ

~t
√

a2oρo
exp



iω
[

τo +
1

2

2
∑

j,k=1

Γjkqjqk
]



 , (8.8)

where ~t(s) = d~ro(s)/ds is the unit vector tangent to the central ray and by ao and
ρo we denote the velocity of P-waves a and the density ρ calculated on the central
ray, respectively.

S - Gaussian beams.
In this case we have the following formula for S - waves in the zero-order

approximation of the ray theory

~Uj =
B̃j
√

b2ρ
~eje

iωτ , j = 1, 2 . (8.9)

where ~ej , j = 1, 2, are unit vectors of the ray centered coordinates and τ and B̃j

should satisfy the eikonal

(∇τ)2 =
1

b2

and the transport equations

2(∇τ,∇B̃j) + B̃j∆τ = 0 ,

respectively. Then by simply repeating all calculations made in the case of P -
waves, we obtain two mutually orthogonal approximate solutions of the elastody-
namic equations

~Uj =
const

√

1
bo

detQ

~ej
√

b2oρo
exp



iω
[

τo(s) +
1

2

2
∑

j,k=1

Γjkqjqk
]



 , j = 1, 2 . (8.10)

Suppose we can now choose such solutions of the equations in variations that
the following properties of the matrices (8.6) and Γ will hold true:

1) detQ 6= 0 for arbitrary s,

2) the matrices Γ are symmetrical, i.e. ΓT = Γ, complex valued and their
imaginary parts are positive-defined.

Then both approximate solutions (8.8) and (8.10) will have no singularities for
arbitrary s and will be concentrated in a vicinity of the central ray ~ro(s). The
latter result comes out from the equality

∣

∣

∣

∣

∣

∣

exp



iω
[

τo(s) +
1

2

2
∑

j,k=1

Γjkqjqk
]





∣

∣

∣

∣

∣

∣

= exp



−ω
2

2
∑

j,k=1

Im Γjkqjqk



 . (8.11)
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Indeed, it follows from equation (8.11) that the modulus of the wave field
decreases exponentially with the increasing coordinates q1, q2 and therefore with
an increasing distance to the central ray.

8.2 How to choose suitable solutions for the equa-
tions in variations

Consider first some auxiliary formulas. Let us denote by X (j) two complex valued
solutions of the equations in variations

X(j) =













q
(j)
1

q
(j)
2

p
(j)
1

p
(j)
2













≡
(

q(j)

p(j)

)

, j = 1, 2 ,

where q(j) and p(j) now mean 2D column vectors

q(j) =

(

q
(j)
1

q
(j)
2

)

and p(j) =

(

p
(j)
1

p
(j)
2

)

.

By using these new notations we can present the J - scalar product in the form

(

JX(1), X(2)
)

=
(

p(1), q(2)
)

−
(

q(1), p(2)
)

,

where as usual
(

p(1), q(2)
)

= p
(1)
1 q

(2)
1 + p

(1)
2 q

(2)
2 .

Now we establish the first auxiliary formula for matrices Q and P

PTQ−QTP =

(

(JX(1), X(1)) (JX(1), X(2))

(JX(2), X(1)) (JX(2), X(2))

)

. (8.12)

In fact, we have

PTQ−QTP =

(

(p(1), q(1))− (q(1), p(1)) (p(1), q(2))− (q(1), p(2))

(p(2), q(1))− (q(2), p(1)) (p(2), q(2))− (q(2), p(2))

)

which coincides with the right-hand side of equation (8.12).
Further, let us denote by P+ the Hermitian conjugate matrix, i.e. (P+)jk =

P̄kj . Then we get the following second auxiliary formula

Q+P−P+Q =

(

(JX(1), X̄(1)) (JX(2), X̄(1))

(JX(1), X̄(2)) (JX(2), X̄(2))

)

(8.13)
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where X̄(j) is a complex conjugate vector with respect to the vector - column X (j).
Remark 1. Evidently, if X(j) is a solution of the equations in variations, then

X̄(j) also satisfies these equations because the equations do not contain complex
coefficients.

Remark 2. Due to (d/ds)(JX(1), X(2)) ≡ 0 for arbitrary solutions X(1) and
X(2) of the equations in variations both PTQ −QTP and Q+P − P+Q do not
depend upon s.

Then the third auxiliary formula reads

Re (JX(j), X̄(j)) = 0 for j = 1, 2 . (8.14)

Proof : we have

(

JX(j), X̄(j)
)

=
(

X̄(j),JX(j)
)

=
(

JT X̄(j), X(j)
)

=

= −
(

JX̄(j), X(j)
)

= −
(

JX(j), X̄(j)
)

which means that the real part of this J - scalar product is equal to zero identically
with respect to s.

Assume now that X(j), j = 1, 2, are chosen in such a way that

(

JX(1), X(2)
)

= 0
(

JX(1), X̄(2)
)

= 0 (8.15)
(

JX(j), X̄(j)
)

= iγ2j , Im γj = 0 , j = 1, 2 .

It follows now from equation (8.12) and the first one from equations (8.15) that

PTQ−QTP = 0 (8.16)

due to (JX(j), X(j)) = 0 for arbitrary j.
From equations (8.15) and (8.13), (8.14) we get

Q+P−P+Q = i

(

γ21 0
0 γ22

)

. (8.17)

Now we are able to prove the following statement: if detQ 6= 0 and Γ = PQ−1

is therefore well defined, then

i) Γ is symmetrical, i.e. ΓT = Γ,

ii) the imaginary part of Γ, i.e. Im Γ = 1
2i (Γ− Γ+) is positively defined.

Proof: consider the difference Γ− ΓT , which can be developed as follows

Γ− ΓT = PQ−1 − (PQ−1)T = PQ−1 − (QT )−1PT =

= (QT )−1{QTP−PTQ}Q−1 = 0

due to equation (8.16) holding true. Hence, Γ = ΓT .
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Consider then Γ− Γ+, which can be developed as follows

Γ− Γ+ = PQ−1 − (PQ−1)+ = PQ−1 − (Q+)−1P+ =

= (Q+)−1{Q+P−P+Q}Q−1 .

Taking now into account equation (8.17) we obtain

Im Γ =
1

2i
(Γ− Γ+) = (Q+)−1

(

1
2γ
2
1 0

0 1
2γ
2
2

)

Q−1 (8.18)

which implies that Im Γ is a positively defined matrix.
So all that is left to be proven is that Q is not a singular matrix, i.e. detQ 6= 0

for each s.
Here is the proof.
Suppose that at some point s∗ we have detQ = 0. This means that the columns

of the matrix Q are linearly dependent, i.e. there are some constants a1 6= 0, and
a2 6= 0 in which the following equations hold true

a1q
(1)
1 (s∗) + a2q

(2)
1 (s∗) = 0 , (8.19)

a1q
(1)
2 (s∗) + a2q

(2)
2 (s∗) = 0 .

We can rewrite the system (8.19) in the vector form as follows

a1q
(1)(s∗) + a2q

(2)(s∗) = 0 . (8.20)

Let us come back to equations (8.15). We can present them in the form

(

p(1), q̄(2)
)

−
(

q(1), p̄(2)
)

= 0 ↔
(

JX(1), X̄(2)
)

= 0
(

p(2), q̄(1)
)

−
(

q(2), p̄(1)
)

= 0 ↔
(

JX(2), X̄(1)
)

= 0
(

p(1), q̄(1)
)

−
(

q(1), p̄(1)
)

= iγ21 ↔
(

JX(1), X̄(1)
)

= iγ21
(

p(2), q̄(2)
)

−
(

q(2), p̄(2)
)

= iγ22 ↔
(

JX(2), X̄(2)
)

= iγ22

Let us multiply all equations by a1ā2, ā1a2, a1ā1 and a2ā2, respectively, and
then summarize all of them. That results in the following formula

(a1p
(1), a2q(2) + a1q(1)) + (a2p

(2), a1q(1) + a2q(2))−
− (a1q

(1) + a2q
(2), a2p(2))− (a2q

(2) + a1q
(1), a1p(1)) =

= iγ21 |a1|2 + iγ22 |a2|2 .

By applying equation (8.20) to the latter formula and bearing in mind that

a1q(1)(s∗) + a2q(2)(s∗) = 0, we obtain

0 = i
[

γ21 |a1|2 + γ22 |a2|2
]

which yields that a1 = a2 = 0. This contradiction proves that detQ 6= 0 for the
arbitrary value of the arc length s along the central ray.
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Conclusion. Thus, if we choose two complex valued solutions X (1)(s) and
X(2)(s) of the equations in variations in accordance with the formulas (8.15) and
insert them into expressions (8.8) and (8.10) for Gaussian beams, we shall obtain
approximate solutions of the elastodynamic equations which possess the properties
listed in the beginning of this chapter: they are concentrated in a vicinity of the
central ray ~ro(s) and have no singularities all along.

Note that the parameters γ1, and γ2 in equations (8.15) remain arbitrary pa-
rameters of a Gaussian beam. They influence on the width of the Gaussian beam
and we shall discuss their role later in more details.

8.3 Example 1: a 3D homogeneous medium

In this case, vectors ~e1(s) and ~e2(s) do not depend upon s due to
κj = (1/C)(∂C/∂qj)

∣

∣

q1=q2=0
= 0 where C is the velocity of waves (for P - waves

C = a and C = b for S - waves).
The equations in variations read (C0 = C)

dqj
ds

= Copj ,
dpj
ds

= 0 , j = 1, 2 .

The general solution can be written as follows

qj(s) = Copj(so)(s− so) + qj(so) ,

pj(s) = pj(so) , j = 1, 2 .

Let us set two complex solutions X (1)(s) and X(2)(s) by the following initial
conditions at the point s = so

X(1)(so) =









1
0
i
2γ
2
1

0









, X(2)(so) =









0
1
0
i
2γ
2
2









.

It follows from the above that for s = so

(

JX(1), X(2)
)

= 0 ,
(

JX(1), X̄(2)
)

= 0 ,
(

JX(j), X̄(j)
)

= iγ2j , j = 1, 2 ,

and, obviously, they hold true for all s.
Further, we get for an arbitrary s

X
(1)
(s) =









Co
i
2γ
2
1(s− so) + 1

0
i
2γ
2
1

0









, X
(2)
(s) =









0
Co

i
2γ
2
2(s− so) + 1

0
i
2γ
2
2
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and therefore

Q =

(

Co
i
2γ
2
1(s− so) + 1 0

0 Co
i
2γ
2
2(s− so) + 1

)

,

P =

(

i
2γ
2
1 0

0 i
2γ
2
2

)

; detQ =

(

Co
i

2
γ21(s− so) + 1

)

·
(

Co
i

2
γ22(s− so) + 1

)

.

The formula for Γ reads

Γ = PQ−1 =











i
2γ
2
1

Co
i
2γ
2
1(s− so) + 1

0

0
i
2γ
2
2

Co
i
2γ
2
2(s− so) + 1











and for the exponent of a Gaussian beam we get

exp

{

iω

[

s− so
Co

+
1

2
Γ11(s)q

2
1 +

1

2
Γ22(s)q

2
2

]}

where

Γjj(s) =
i
2γ
2
j

Co
i
2γ
2
j (s− so) + 1

, j = 1, 2 .

After some algebra we get

Re Γjj =
Co
γ4j
4
(s− so)

1 +
C2oγ

4
j

4
(s− so)2

, Im Γjj =

1

2
γ2j

1 +
C2oγ

4
j

4
(s− so)2

.

Width of a Gaussian beam.
There is an important characteristic of a Gaussian beam which can be in-

troduced by analogy with the Gaussian functions. Indeed, consider the function
gj ≡ exp

{

−(ω/2)Im Γjjq
2
j

}

. If we present gj in the form gj = exp
{

−q2j /Λ2j
}

,
then Λj is called usually the half width of the Gaussian function gj . In our case
we get two half widths Λj , j = 1, 2, with respect to the ray centered coordinates
q1 and q2, correspondingly,

Λj =
1

√

ω

2
Im Γjj

=

√

√

√

√

√

√

1 +
C2oγ

4
j

4
(s− so)2

ω

4
γ2j

.

It follows from the latter formula that

i) Λj depends upon parameter γj and achieves the minimum at the point s =
so,
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ii) as s→∞ the half-width tends to infinity, i.e. Λj ∼
Coγjs√

ω
.

Thus, in our particular case a Gaussian beam has two independent widths 2Λj

in the qj direction, j = 1, 2. By means of the parameters so, γ1 and γ2 we can
regulate the widths and position of their minimum. The width of a Gaussian beam
increases monotonously and rather fast with the increase in distance s− so along
the central ray. Evidently, in inhomogeneous media the behavior of the width
may be more complicated, but in any case a Gaussian beam will be narrower for
a higher frequency ω

Consider, for example, curves on a qj , s- plane defined by the condition q2j /Λ
2
j =

Kj = const. In the case under consideration this yields a family of hyperbolae
dependent on the constant Kj

q2j
a2
− (s− so)2

b2
= 1 , a2 =

4K

ωγ2j
, b2 =

4

C2oγ
4
j

.

If we consider K = 1 we can conventionally say that the Gaussian beam is
concentrated in the vicinity of the central ray bounded by two branches of the
corresponding hyperbola.

By analogy with the ray method we may say that the term 1
2

∑2
i,j=1 Re Γijqiqj

in formulas (8.8) and (8.10) for the Gaussian beams describes the wavefronts of
the beams.

Note that Re Γjj = 0 for s = so and therefore the wavefront of the Gaussian
beam becomes flat at this point.

8.4 Reduction to a 2D

In a 2D case, unit vector ~e(s) of the ray centered coordinates is parallel to the
normal of the central ray and it should be considered as known, if the central ray
is known. The equations in variations have the form

d

ds
q = Cop ,

d

ds
p = − 1

C2o

(

∂2C

∂q2

∣

∣

∣

∣

q=0

)

q , (8.21)

where C is the velocity of the waves under consideration. We denote by X (j)(s),
j = 1, 2, two solutions of the equations in variations

X(j)(s) =

(

q(j)(s)
p(j)(s)

)

.

Let us set X(j) by the following initial conditions

X(1)(0) =

(

1
0

)

and X(2)(0) =

(

0
1

)

,
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then they are linearly independent for all s. Indeed, we can check that

det

(

q(1)(s) q(2)(s)
p(1)(s) p(2)(s)

)

= −
(

JX(1), X(2)
)

,

where this time J =

(

0 1
−1 0

)

. But the right-hand side of the latter equation

does not depend on s and therefore
(

JX(1)(s), X(2)(s)
)

=
(

JX(1)(0), X(2)(0)
)

=
−1.

Now let us introduce the following complex valued solution of the equations in
variations

Q(s) = Z1q
(1)(s) + iZ2q

(2)(s) , P (s) = Z1p
(1)(s) + iZ2p

(2)(s) (8.22)

where Z1 and Z2 are arbitrary positive constants. Then we get

Γ(s) = P (s)Q−1(s) =
Z1p

(1)(s) + iZ2p
(2)(s)

Z1q(1)(s) + iZ2q(2)(s)
.

It is easy to see that

Im Γ(s) =
−2iZ1Z2

(

JX(1), X(2)
)

2i|Q|2 =
Z1Z2
|Q|2 > 0 .

Note that in the case under consideration Q(s) 6= 0 for all values of s. In
fact, if Q(s) = 0 then both q(1)(s), q(2)(s) are equal to zero. But this means that
(JX(1)(s), X(2)(s)) = 0 which is impossible!

Hence, we obtain the following formulas for a P - Gaussian beam

~U (p) =
const

√

ao(s)ρo(s)

~t(s)
√

Qa(s)
exp

{

iω

[

τ (a)o (s) +
1

2
Γa(s)q

2

]}

and for a S - Gaussian beam

~U (s) =
const

√

bo(s)ρo(s)

~e(s)
√

Qb(s)
exp

{

iω

[

τ (b)o (s) +
1

2
Γb(s)q

2

]}

where indices a and b indicate the velocities of P and S waves, respectively.
Thus, to construct Gaussian beams in a 2D case we have to extend two real

linearly independent solutions X(j)(s), j = 1, 2, of the equations in variations
(8.21) along the central ray. Then a desirable complex valued solution can be
obtained by formulas (8.22), where parameters Z1 and Z2 (more precisely only
their ratio!) remain to be arbitrary ( compare with γ1, γ2 in equations (8.15) ).

8.5 Complex point source and a Gaussian beam

Consider a homogeneous medium and the Green’s function problem for the reduced
wave equation (in 3D)

(

∆ +
ω2

C2

)

G = −δ(M −Mo) .
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For G we have the following expression

G =
1

4πR
ei

ω
C
R , R =

√

(x− xo)2 + (y − yo)2 + (z − zo)2 .

Now let us “plunge” the source with coordinates xo, yo, zo into the complex
space, assuming for simplicity that yo = zo = 0 and xo = iα2, (i)2 = −1, Imα = 0.

Suppose further that |x− xo|2 À y2 + z2, then we can expand R as follows

R =

√

(x− xo)2
(

1 +
y2 + z2

(x− xo)2
)

= (x− xo)
(

1 +
1

2

y2 + z2

(x− xo)2
+ · · ·

)

=

= x− iα2 + 1

2

y2 + z2

x− iα2 + · · · .

If in the formula for G we substitute R by the latter expansion, preserving the
two terms under the exponent (because of the presence of ω!) and only the first
term in the amplitude, we shall obtain some approximation to that exact solution

G ' e
ω
C
α2

4π
·
exp

{

i ωC

[

x+ 1
2
y2+z2

x−iα2

]}

x− iα2

which is exactly a Gaussian beam propagating along the x-axis. Indeed, this
expression coincides with the formula for a Gaussian beam if we take into consid-
eration that in this case

Γ11 = Γ22 =
1

x− iα2 =
x

x2 + α4
+ i

α2

x2 + α4

and
√
detQ = x− iα2.

This example shows that Gaussian beams can sometimes be deduced from some
exact solutions under special conditions.

8.6 Gaussian beams in a medium with smooth in-
terfaces

The problem of reflection and transmission of a Gaussian beam on a smooth inter-
face has a lot in common with the corresponding problem of the ray method. In
fact, even analytical formulas for Gaussian beams are very similar to those known
in the paraxial ray theory. This enables us to use both our previous technique and
some results for solving the reflection/transmission problem for Gaussian beams.

Our main goal now is to describe a procedure for extending the two complex
valued solutions of the equations in variations along the reflected and transmit-
ted central rays and to prove that the extended solutions preserve fundamental
properties of the Gaussian beams.

The corresponding procedure is the following.
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1) At a point of incidence of the incident Gaussian beam central ray we must
construct the reflected and transmitted central rays for the corresponding
reflected and transmitted Gaussian beams. Normally all types of rays should
be taken into account, i.e. P and S rays.

2) Let us denote by T the ‘eikonal’ of a Gaussian beam, i.e.

T = τo(s) +
1

2

2
∑

j,k=1

Γjkqjqk .

On the interface S we impose the following conditions on the eikonals

Tin
∣

∣

S
= T (a)r

∣

∣

S
= T (b)r

∣

∣

S
= T

(a)
tr

∣

∣

S
= T

(b)
tr

∣

∣

S
(8.23)

which should be accurately satisfied up to the second order terms with re-
spect to q1 and q2. Evidently, equations (8.23) give rise to the linear rela-
tionship between matrices Γ for the incident and the reflected (transmitted)
Gaussian beams (see Section 6.3 in Chapter 6). Then we add to equations
(8.23) a requirement for q-components of the complex valued solutions X (j)

to be continuous at the incident point. Both the latter requirement and
equations (8.23) give rise to the following results at the incident point s = s∗

X
(j)
r (s∗) = MrX

(j)
in (s∗)

X
(j)
tr (s∗) = MtrX

(j)
in (s∗)

j = 1, 2 (8.24)

where Mr and Mtr are 4 x 4 matrices which describe (in linear approxima-
tion!) reflection and transmission of the rays from the ray tubes around the
central rays.

It can be verified that Mr and Mtr both for P and S rays are sympletic
matrices and, therefore the J-scalar product of these complex solutions X (j)

will be preserved at the incident point. This yields that the fundamental
properties of Gaussian beams are preserved after reflection and refraction.

3) If φin means the initial “amplitude” of an incident Gaussian beam then for
the initial “amplitudes” of the reflected and refracted Gaussian beams we
obtain the following linear relationship

φr = Rrφin , φtr = Rtrφin , (8.25)

where reflection Rr and transmission Rtr coefficients coincide, essentially,
with the corresponding coefficients in the ray theory.

Conclusion. If the incident angle of the central ray of the incident Gaussian
beam is such that no critical angles appear (both for P and S rays!) then, by using
the algorithm described above, we satisfy approximately the boundary conditions
on the interface in a vicinity of the incident point by constructing the reflected and
refracted Gaussian beams. Note that the latter ones are uniquely constructed.
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8.7 Gaussian beam integral

Point source problem.
In this case we have initially the central ray field, i.e. a family of rays emanated

from the source in all directions, and the spherical angles θ, ϕ can be taken as the
ray parameters. We consider each ray of the central ray field as the central ray
~r = ~ro(s, θ, ϕ) and construct a Gaussian beam propagating along this ray. Let us

denote it by ~U(s, q1, q2; θ, ϕ). We then, obviously, get

~U(s, q1, q2; θ, ϕ) =
1

√

1
ao

detQ

~t
√

a2oρo
exp



iω
[

τo(s) +
1

2

2
∑

j,k=1

Γjkqjqk
]



 (8.26)

for the case of a P-wave. Note that we consider here const=1.
Let us denote by φo(θ, ϕ) some initial amplitude of the Gaussian beam (8.26)

and construct the following integral over all rays from the central ray field

~U =

∫ π

o

dθ

∫ 2π

o

dϕ φo(θ, ϕ)~U(s, q1, q2; θ, ϕ) . (8.27)

It is clear, that ~U given by equation (8.27) satisfies approximately the elasto-
dynamic equations. But in order to describe precisely the wave field irradiated by
the point source we have to find a suitable value for the initial amplitudes φo(θ, ϕ).
We shall discuss this problem in the next section.

Arbitrary initial data.
Certainly, we can use the Gaussian beam method in more general cases and

not only for point sources.
However, the initial data cannot be arbitrary. They have to preserve peculiar-

ities of the high frequency wave fields, that is, the wave front and distribution of
the amplitude along the wave front have to be given separately. In other words,
we may say that the initial data must have the form of a ray series, at least of the
leading term of a ray series, in order to propagate them by means of the Gaussian
beam method.

Suppose we know an initial wave front τ = t(= const). Then we can construct
a family of rays orthogonal to the wave front and some coordinates α, β on this
wave front can be taken as the ray parameters. Next, we construct a Gaussian
beam for each ray from this family of rays. Let us denote it by ~U(s, q1, q2;α, β)
where α, β are the ray parameters. Further, we introduce the so far unknown
initial amplitudes φo(α, β) of the Gaussian beams and present the wave field as
an integral

~U =

∫∫

(τ=t)

dαdβφo(α, β)~U(s, q1, q2;α, β) (8.28)

over the whole surface of the wave front τ = t. This integral, clearly, satisfies
approximately the elastodynamic equations, but in order to describe exactly the
wave field caused by given initial data, the initial amplitudes φo(α, β) should be
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specifically chosen. Note that so far we have not referred to distribution of the
amplitude on the wave front.

Along with integral (8.28) we can extend initial data by means of the ray
method. Indeed, in some vicinity of τ = t the family of rays will be regular and
this fact enables us to get the ray method formulas for the wave field. This implies
that we can obtain the amplitude and the eikonal in some vicinity of the initial
wave front. And it is enough to find φo.

8.8 Initial amplitudes φo(α, β) for the Gaussian
beam integral

Let us insert expression (8.26) for a Gaussian beam in integral (8.27) or (8.28)
in order to illustrate the analytical nature of the corresponding double integral in
3D. Evidently, in 2D we obtain a single integral because in this case the family of
rays depends only upon one ray parameter. Thus, in the case of P-waves we get
the following formula

~U =

∫ 2π

o

dϕ

∫ π

o

dθA exp(iωf)~t , (8.29)

where

f = τo(s) +
1

2

2
∑

j,k=1

Γjkqjqk ; A =
φo(θ, ϕ)

√

ao(s)ρo(s) detQ
(8.30)

and frequency ω is the large parameter. It follows from equations (8.29) and (8.30)
that we get an integral with quick oscillating integrand and therefore asymptotics
of the integral as ω →∞ can be derived by means of the stationary phase method,
or being more precise, by means of some extension of this method because Γ is a
complex-valued matrix.

It turns out that in a domain where the family of rays involved in the integral
is regular, the high frequency asymptotics of the integral has precisely the form of
a ray series. It holds true both for the point source problem and for the arbitrary
case as well.

On the other hand, in the domain where the family of rays is regular we can
obtain the ray method formula for the wave field and this formula is unique and
well-defined.

Then, by comparing both these expressions for the wave field we obtain the
final formula for initial amplitudes φo.

Unfortunately, all necessary calculations are not simple due to the fact that all
functions of the ray parameters in integral (8.29) are given in an implicit form. In
some particular cases they can be simplified.

Only the most important steps on that way are described. For more details,
see Popov (1981,1982).



Initial amplitudes for the Gaussian beam integral 129

a) Consider the point of observation M located in a domain where the family
of rays is regular. Hence, there is only one ray passing through it. Let it be
the ray given by equations θ = θo, ϕ = ϕo and we denote it by ~ro(s).

It is clear that the main contribution at M is given by the Gaussian beam
having this ray ~ro(s) as the central one. Contributions from others Gaussian
beams to the point are smaller due to an exponential decrease of all of them
with an increase in distance to M .

This leads to the fact that the stationary point is θ = θo, ϕ = ϕo and that
it is a simple (non-degenerate) stationary point.

b) On the next step we have to expand the function f – see equation (8.30) –
in power series on θ − θo and ϕ− ϕo. This means that now we have to take
into account contributions from all other Gaussian beams from the vicinity
of the ray ~ro(s) to the integral.

Let us denote by s′, q′1, q
′
2 the ray centered coordinates referred to the ray ~ro

(so now we write ~ro(s
′)!).

It is possible to deduce by studying the connecting formulas between s, q1, q2
and s′, q′1, q

′
2 that

∂qj
∂θ

∣

∣

∣

∣

θ=θo,ϕ=ϕo

= −
∂q′j
∂θ

∣

∣

∣

∣

θ=θo,ϕ=ϕo

,

(8.31)

∂qj
∂ϕ

∣

∣

∣

∣

θ=θo,ϕ=ϕo

= −
∂q′j
∂ϕ

∣

∣

∣

∣

θ=θo,ϕ=ϕo

.

Further, eikonal τo =
∫

(1/Co(s))ds along the central ray of the Gaussian
beam being calculated for all rays of the family of rays under consideration
defines a global function in the domain where the family of rays is regular.
And this function can be investigated by means of the paraxial ray theory.
Hence, in a vicinity of the ray ~ro(s

′) we get

τ = τo(s
′) +

1

2

2
∑

j,k

Gjkq
′
jq

′
k + · · · . (8.32)

Note that in order to avoid misunderstandings we denote by G the matrix in
power series (8.32) for the eikonal τ and preserve Γ for the Gaussian beams.

If now τ = tM is precisely the wave front on which an observation point M is
located, then the equation of this wave front with accuracy up to the terms
of second order reads

τo = tM −
1

2

2
∑

j,k=1

Gjkq
′
jq

′
k + · · · . (8.33)
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Then, following the paraxial ray theory we can present it in the form

G = GpG
−1
q (8.34)

instead of PQ−1 but with the same sense as P and Q (see Chapter 5). Thus,
we obtain the following expression for the function f in equation (8.29)

f = tM +
1

2

2
∑

j,k=1

(Γ−G)jkq
′
jq

′
k + · · · . (8.35)

The last remark to this point should be that only coordinates q′j , j = 1, 2 have
to be differentiated with respect to the ray parameters, though Γ depends
on the ray parameters too. It follows from this fact that for θ = θo, ϕ = ϕo
we have q′1 = q′2 = 0 and therefore the derivatives of Γ vanish! And the
following derivatives

∂q′j
∂θ

∣

∣

∣

∣

θoϕo

,
∂q′j
∂ϕ

∣

∣

∣

∣

θoϕo

, j = 1, 2 ,

calculated on the central ray ~ro(s
′) form matrix Gq which is responsible for

the geometrical spreading. In fact, J = |detGq| in our case!

Finally we get the following result

f = tM +
1

2

2
∑

j,k=1

(

GT
q (Γ−G)Gq

)

jk
αjαk + · · · , (8.36)

where α1 = θ − θo , α2 = ϕ− ϕo.

c) According to the stationary phase method for double integrals we get the
following expression for the main term of the asymptotics (after introducing
new variables β1 =

√

ω/2(θ − θo) and β2 =
√

ω/2(ϕ− ϕo) )

~U(M) '
2

ω
A(sM )eiωtM ~t(sM ) · I , (8.37)

where A(sM ) means the amplitude A – see (8.30) – calculated on the central
ray θ = θo, ϕ = ϕo at the point of observation s = sM . Integral I in equation
(8.37) takes the form

I =

+∞
∫∫

−∞

exp







i
2
∑

j,k=1

(GT
q (Γ−G)Gq)jkβjβk







dβ1
dβ2

and can be calculated exactly by developing the quadratic form to the sum
of squares. Note that it converges because of the presence of Im Γ.
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We eventually obtain on the right-hand side of equation (8.37) the following
expression

~U(M) '
2πi

ω

φo(θo, ϕo)
√

detL(0)

exp(iωtM )
√

ao(sM )ρo(sM ) detGq(sM )
~t(sM ) (8.38)

where L(0) is some matrix, which does not depend upon s.

Apparently, formula (8.38) has the form of the zero-order term of a ray series
with the eikonal τ = tM and the geometrical spreading J = |detGq(sM )|. This
enables us to find φo(θo, ϕo) by comparing it with the ray method asymptotics of
the wave field under consideration.

8.9 Numerical algorithm of the Gaussian Beam
method

An algorithm for computation of the wave field by means of the Gaussian beam
method can be divided into the following three steps.

i) In a vicinity of an observation point M we have to construct a fan of rays
(or a ray diagram) which covers this vicinity more or less uniformly.

ii) We have to construct a Gaussian beam propagating along the central ray for
each ray of the fan.

iii) The contribution of all Gaussian beams to the wave field has to be summa-
rized at the observation point M .

Consider each step separately.

i) In order to construct the ray diagram in a vicinity of M we can use well-
known algorithms in the ray theory. The new moment consists in construct-
ing the ray centered coordinates for each ray from the fan. To this end we
have to solve the differential equations for one of the vectors ~ej along the ray
in case of a 3D medium (the second one can be found by means of algebra).
Note that in 2D we are not obliged to solve additional equations for ~e. Then
we have to find ray centered coordinates of an observation point M for each
ray.

ii) To construct a Gaussian beam we have to know two complex valued solutions
of the equations in variations (in 3D). Actually, it implies that a full system of
linearly independent solutions of the equations should be known, or in other
words, the fundamental matrix of the equations in variations. And it is more
convenient to work with this matrix, say W(s). If we know it, we can retrieve
the complex valued solutions X(j)(s) by the formula X(j)(s) = W(s)Z(j),
where Z(j) are appropriate complex initial values for X (j) (for example, at
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the point source). Note that in a 2D case the fundamental matrix W is
formed by two linearly independent solutions.

On an interface, an incident Gaussian beam gives rise to the reflected and
the refracted Gaussian beams. In order to construct them, the reflection
(refraction) matrices for the rays close to the central ones should be involved
along with the reflection (refraction) coefficients for the amplitudes of the
Gaussian beams.

iii) To summarize the contributions of all Gaussian beams to the wave field at
the observation point, we can use any approximate formulas for numerical
integration. The final result will depend upon the density of rays in the fan.
But it seems relevant to mention here that (a) we do not need to construct
the ray passing exactly through the observation point and (b) by using one
fan of rays we can compute the wave field at many observation points.

In order to minimize the contribution of Gaussian beams distant from M it
seems natural to use such values of parameters γ1, γ2 that provide a narrow
width of Gaussian beams in the vicinity of M .

8.10 On the role of the Gaussian beam free pa-
rameters

In order to illustrate the role of the free Gaussian beam parameters, consider the
point source problem in a 2D homogeneous medium

(∆ + k2)U = δ(x)δ(y) .

The exact solution of the problem reads U = −(i/4)H (1)
o (kr). We have the

following asymptotics for U as kr →∞

U = − i
4

√

2

πkr
ei(kr−

π
4 )

[

1− i

8kr
+O

(

1

(kr)2

)]

. (8.39)

On the other hand we can apply the Gaussian Beam method to the problem, if
k is assumed to be large. In this case we have the central ray field with its center
located at the origin x = y = 0, and the polar angle ϕ is the ray parameter for the
family of rays. Denote by Uϕ(s, n) a Gaussian beam propagating along the ray
fixed by the angle ϕ, then

Uϕ(s, n) =
1√

a1 + ia2s
exp

[

ik

(

s+
1

2

ia2
a1 + ia2s

n2
)]

(8.40)

where a1 and a2 are arbitrary parameters of the Gaussian beam (they both must
be positive to provide Im (P/Q) > 0).

The integral Ũ over the Gaussian beams has the form

Ũ =

∫ 2π

o

φo(ϕ)Uϕ(s, n)dϕ, φo(ϕ) = − i

4π

√
a1 . (8.41)
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In order to estimate precision of the approximate solution Ũ , we have to in-
vestigate the absolute value |U − Ũ | as a function of a1, a2. It is not so easy to
analytically estimate the difference |U− Ũ |, so we will proceed as follows. Assume,
that a1 and a2 are the same for all the rays, i.e. they are independent of ϕ, and let
us calculate the asymptotics of the integral Ũ as k → ∞ within the accuracy up
to the second term of the stationary phase method. By denoting ro the distance
to an observation point, we get after some calculations

Ũ = − i
4

√

2

πkro
ei(kro−

π
4 )
[

1− i

8kro

(

1− 3r2o
a22
a21

)

+O(k−2)

]

. (8.42)

By comparing the second item in equation (8.39) to (8.42) we come to the
following conclusions:

i) If ro, a2/a1 are fixed and k →∞ the second item will be as small as we wish
and the influence of the multiplier

(

1− 3r2o(a
2
2/a

2
1)
)

will be small. As this

turns out, the Gaussian beam integral Ũ provides the asymptotics of the
exact solution U with respect to the wave number k.

ii) On the contrary, if k is fixed and we increase the distance ro between the
source and the receiver the second term in equation (8.42) will increase due
to the multiplier

(

1− 3r2o(a2/a1)
2
)

. Hence, precision of asymptotic solution

Ũ decreases. This means that, in general, the Gaussian beam asymptotics
is not uniform with respect to the distance!

Now let us choose the arbitrary parameters a1, a2 in such a way that the width
of the Gaussian beam in a vicinity of the observation point is as small as possible.
To this end consider ImΓ in equation (8.40)

Γ =
ia2(a1 − ia2s)

(a1 + ia2s)(a1 − ia2s)
=

ia1a2
a21 + (a2s)2

+
a22s

a21 + (a2s)2
.

Im Γ =
a1a2

a21 + (a2s)2
=

ε

1 + ε2s2
; ε =

a2
a1

.

By differentiating Im Γ with respect to ε and putting (d/dε)Im Γ = 0, we
obtain consistently

d

dε
Im Γ =

1− ε2s2
(1 + ε2s2)2

= 0⇒ ε2 =
1

s2
.

This means that the minimum of the width of the Gaussian beam takes place
if ε = 1/ro, where ro is the distance between the source and the observation point.
If we assume further that a2/a1 = 1/ro the second term in equation (8.42) takes
the form

i

8kro

(

1− 3r2o
a22
a21

)

= −2 i

8kro
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Figure 8.1: Structure of rays and caustics in the wave guide. A point source is
located at the origin.

and, hence, the error provided by the integral Ũ , (8.41), and caused by the sec-
ond term in equation (8.42), does not increase when the distance to the source
increases.

Thus, this simple example shows that with a fixed wave number, the region
of validity of the Gaussian beam method can be extended by means of a special
selection of the arbitrary parameters. However, so far the question of an optimum
selection of such parameters is not entirely clear.

8.11 Numerical examples

We consider a wave guide formed by the velocity model a = a1+αz2. The axis of
the wave guide coincides with the horizontal x-axis. Behavior of rays is depicted
in Fig. 8.1. The caustic is formed by two symmetrical branches of a curve (bold
lines on Fig. 8.1) and has a cusp located at the point x = x1.

Example 1

On Fig. 8.2, the modulus of P-wave |~U | is calculated on interval 1− 1′, which
includes the cusp of the caustic, by means of the Gaussian beam method (solid
line) and the ray method (dashed line). The ray method fails in a vicinity of the
cusp x = x1 but both methods provide a good coincidence apart from the interval
|x− x1| ≤ 1, 5λa, where λa is the wave length of P-wave.

Example 2

On Fig. 8.3 the wave field is computed on the interval 2 − 2′ which intersects
the upper branch of the caustic under the angle π

2 (see Fig. 8.1). Note that only
the rays reaching the caustic from below are taken into account in the calculations.
We can observe a typical transition of the wave field from the light where the wave
field is oscillating to the caustic shadow where it decays exponentially. Note that
the focusing phenomenon on the caustic becomes stronger with the increase in the
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frequency of the wave field.
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Figure 8.2: Modulus of the P-wave in a vicinity of the cusp of the caustic computed
by the ray method (dashed line) and by the Gaussian Beam method (solid line).
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Figure 8.3: Modulus of the P-wave computed in a vicinity of a simple branch of
the caustic for 10Hr (solid line) and 5Hr (dashed line).

Example 3 Reflection from a concave traction free boundary.
Equation of the boundary is taken in the following form

Z = R

[

exp

(

−1

2

X2

R2

)

− 0, 1

]

, (8.43)

R = 20 km. (8.44)

A point source – center of dilatation – is placed at the origin. We consider
a homogeneous medium, a = 4000 m/sec, b = 2500 m/sec. The incident P-wave
~U
(p)
in with frequency ω = 20Hr excites on the boundary reflected S-wave ~U

(s)
r and
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Figure 8.4: Structure of rays and caustics after reflection from a concave boundary.
P-rays are depicted by solid lines and S-rays by dashed lines.

reflected P-wave ~U
(p)
r which have caustics B and A, respectively, (bold lines on

Fig. 8.4). The total reflected wave field |~U | = |~U (p)r + ~U
(s)
r | is depicted in Fig. 8.5

(line 1) and |~U (s)r | is presented by line 2. The wave field is calculated by means
of the Gaussian beam method on an interval which contains both cusp points ZB

for S rays and ZA for P rays.
In general, the behavior of the total wave field modulus is similar to the one

depicted in Fig. 8.2 and is typical for the vicinity of a cusp point.

The behavior of |~U (s)r | is not typical and line 2 on Fig. 8.5 follows the behavior
of the reflection coefficient of the S wave. On the axis x = 0, it is equal to zero
and grows monotonously with an increasing modulus of the incident angle.

It follows from these numerical experiments that the Gaussian beam method
does not face problems on caustics with a different geometrical structure.
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Figure 8.5: The wave field reflected by a concave traction free boundary. The
incident wave field is generated by the center of dilatation.
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9
The Gaussian Beam and the ray

methods in the time-domain

9.1 Correlation between non-stationary and sta-
tionary wave fields

Wave propagation problems in elastodynamics in the time-domain can be formu-
lated as follows. The displacement vector ~U satisfies a non-homogeneous system
of elastodynamic equations

L̂~U − ρ∂
2~U

∂t2
= ~F (t, x, y, z) (9.1)

where L̂ means an operator containing derivatives with respect to the spatial
variables (its explicit form is given in Chapter 7). Vector ~F has a sense of external
forces, or a source of the wave field. We have to impose also an initial conditions
for ~U at the initial moment, say, t = 0, the so-called Cauchy data ~U

∣

∣

t=0
= ~Uo and

∂~U/∂t
∣

∣

t=0
= ~Uto. If we consider the wave field generated only by the source ~F we

have to assume that ~Uo = 0 and ~Uto = 0, or in other words, impose that ~U = 0
for t < 0.

In geophysics the following point sources are used rather often. The center of
dilation

~F = ~F1 ≡ f(t)grad (δ(M −Mo)) , (9.2)

and the center of rotation

~F = ~F2 ≡ f(t)rot (~l δ(M −Mo)) , (9.3)

where ~l is a constant unit vector and f(t) is the temporal action or the wavelet.
In geophysical applications f(t) can be described as a pulse modulated both in

139
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amplitude and frequency

f(t) = Re{A(t)eipθ(t)} , (9.4)

where A(t) and θ(t) are sufficiently smooth functions and A(t) is substantially
different from zero on a finite interval of time. The derivative of θ(t) does not
vanish on this interval and describes an instantaneous frequency ω(t) = −pθ′(t)
(we assume that θ′(t) < 0). Now, if p is supposed to be large, we get quick
oscillations because of exp(ipθ) and a smooth envelope given by A(t).

Let us denote by fF (ω) the Fourier transform of f(t)

fF (ω) =

∫ +∞

−∞

eiωtf(t)dt . (9.5)

Suppose further that we know the solution of the stationary problem

L̂ ~G+ ρω2 ~G =

{

grad (δ(M −Mo))

rot (~l δ(M −Mo))
, (9.6)

then the solution of the non-stationary problem (9.1) can be presented in the form

~U =
1

2π

∫ +∞

−∞

e−iωtfF (ω) ~G(M,Mo;ω)dω . (9.7)

Hence, if we are able to construct the solution of stationary problem (9.6) in
the frequency domain, we shall solve non-stationary problem (9.1) by means of
formula (9.7).

Let us prove that the integral in equation (9.7) can be reduced to the integral
over 0 ≤ ω < +∞, i.e.

~U =
1

π
Re

∫ ∞

o

e−iωtfF (ω) ~G(M,Mo, ω)dω (9.8)

for the real solution of the initial problem (9.1).
Proof. For the real solution we have

~U = ~U =
1

2π

∫ +∞

−∞

eiωtfF (ω) ~G(M,Mo;ω)dω .

By introducing a new variable of integration ω′ = −ω we obtain

~U =
1

2π

∫ +∞

−∞

e−iω
′tfF (−ω′) ~G(M,Mo;−ω′)dω′ . (9.9)

By comparing the integrals in equations (9.7) and (9.9) we get

fF (−ω′) ~G(M,Mo;−ω′) = fF (ω
′) ~G(M,Mo;ω

′) . (9.10)
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Consider now the integral over (−∞, 0) in formula (9.7). It can be developed
as follows

∫ 0

−∞

e−iωtfF (ω) ~G(M,Mo;ω)dω =

∫ ∞

o

eiω
′tfF (−ω′) ~G(M,Mo;−ω′)dω′

=

∫ ∞

o

eiω
′tfF (ω

′) ~G(M,Mo;ω
′)dω′ =

∫ ∞

o

e−iω′tfF (ω′) ~G(M,Mo;ω′)dω′

due to equation (9.10) holding true (note that we actually used an equation which
is a complex conjugate with respect to (9.10)).

Taking into account the latter result we obtain

~U =
1

2π

∫ ∞

o

e−iω
′tfF (ω

′) ~G(M,Mo;ω
′)dω′ +

+
1

2π

∫ ∞

o

e−iω′tfF (ω′) ~G(M,Mo;ω′)dω′ =

=
1

π
Re

∫ ∞

o

e−iω
′tfF (ω

′) ~G(M,Mo;ω
′)dω′

which is exactly formula (9.8).
Thus, in order to construct the real solution for a non-stationary problem (9.1)

we have to know the solution for the corresponding stationary problem (9.6) only
for positive frequency ω.

Let us dwell on some geometrical peculiarities of wave propagation caused by
the point source problem (9.1), (9.2) or (9.1), (9.3). We assume that ~U ≡ 0 for
t < 0 and therefore the wave field is generated only by the source. For the sake of
simplicity, consider a 2D homogeneous medium.

M
x

y

t

Figure 9.1: Scheme of wave propagation in the space-time domain caused by a
point source located at the origin.

In order to present the wave field in the space-time domain x, y, t, we have
to draw a set of cones emanated from the source at each moment t0 ∈ (0, T ),
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where T means the duration of the temporal action f(t). These cones are called
characteristics and the wave field propagates along them. They themselves are
formed by straight lines

t− to =
s

C
, x = s cosϕ , y = s sinϕ ;ϕ ∈ (0, 2π), to ∈ (0, T ) , (9.11)

where C is the velocity of the wave and s is the arc length along the lines. Straight
lines (9.11) in the space-time t, x, y are called the bicharacteristics and their pro-
jections onto x, y space are called the rays.

Consider a plane t = t1 in space-time orthogonal to t-axis (obviously, it is
parallel to the space x, y). This plane intersects each cone along a circle. The
projection of the circle onto x, y space gives the position of the wavefront at the
moment t = t1. Thus, in the x, y-space we obtain a set of circular wavefronts
emanated from the source at each moment t ∈ (0, T ).

In order to describe the wave field at an observation pointM , we have to depict
the straight line starting at M in an orthogonal direction to the x, y - plane. The
wave field reaches M at the moment when this line intersects the first cone which
was emanated from the source at the moment t = 0.

This picture becomes more and more complicated with the increase in time
because each interface of the medium will give rise to the reflected and transmitted
waves and because more extended domains will be involved into the process of
propagation of waves.

9.2 The Fourier transform: high frequency and
smoothness

Consider some features of the Fourier transformation:

f(t) =
1

2π

∫ +∞

−∞

e−iωtfF (ω)dω . (9.12)

The integral (9.12) will exist if

∫ +∞

−∞

|fF (ω)| dω ≤ const <∞ .

i) Assume first, that fF (ω) 6= 0 if ω ∈ [a, b] and fF (ω) ≡ 0 for all other values
of ω. In this case we have

f(t) =
1

2π

∫ b

a

e−iωtfF (ω)dω

and f(t) is a smooth function of t.

Indeed, by differentiating n times the function f(t) with respect to t we
obtain

dn

dtn
f(t) =

1

2π

∫ b

a

e−iωt(−iω)nfF (ω)dω
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and the integral on the right-hand side does exist because of finite limits of
integration! This means that f(t) ∈ C∞, i.e. it can be differentiated an
arbitrary number of times.

ii) Assume now that the asymptotics of fF (ω) as ω →∞ has the form

fF (ω) =
const

ωn
, n is integer , n > 1,

and let us observe the smoothness of the function f(t) in this case. To this end we
have to investigate only the integral over the interval (Ω,∞) where Ω is supposed to
be large enough so that f(t) can be substituted in the integral by its asymptotics.
By differentiating (n− 1) times function f(t) we arrive at the following integral to
be studied

∫ ∞

Ω

e−iωt(−iω)n−1 const
ωn

dω , ΩÀ 1 .

One can verify just by integrating in parts that the latter integral converges for
t 6= 0 and does not converge if t = 0. This means that the (n− 1) order derivative
of function f(t) is singular at t = 0 while the derivatives of a lesser order are
smooth.

Hence, in this case we obtain the following result: the asymptotic behavior of
fF (ω) for large ω is responsible for the smoothness of the temporal action f(t)
and singularities may appear when t = 0.

9.3 The ray method in the time domain

A ray method series in the ω-domain has the form

~U = eiωτ
∞
∑

k=0

~Uk
(−iω)k . (9.13)

One of the ways to develop the ray method in the time domain is simply
to replace ~G(M,Mo;ω) in equation (9.7) by its ray asymptotics (9.13) which is
valid for large ω, and carry out the integration over ω just formally (in fact, this
integration is being done in terms of distributions).

Consider in more detail the main term (or zero-order term) of the series (9.13).

For the main term ~Uo(M,Mo; t) we get:

~Uo(M,Mo; t) =
1

2π

∫ +∞

−∞

e−iωt+iωτfF (ω)~Uodω . (9.14)

If ~Uo does not depend upon ω we obtain immediately

~Uo(M,Mo; t) = ~Uof(t− τ) , (9.15)

where f is the temporal action at the source.
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A corresponding procedure with the second term leads to the following expres-
sion for ~U1(M,Mo; t)

~U1(M,Mo; t) = ~U1g(t− τ)
where g′(y) ≡ dg(y)/dy = f(y) because of the presence of −iω in the denominator!

Thus, we obtain the following ray method series in the time domain

~U(M,Mo; t) =
∞
∑

n=0

~Un(M,Mo)F
(n)(t− τ) , (9.16)

where the set of functions F (n)(y) satisfies the following conditions

d

dy
F (n)(y) = F (n−1)(y) , n = 1, 2, · · · .

Now we may forget the ray series (9.13) in the ω-domain and work with the
expression (9.16) just by inserting it directly into the elastodynamic equations.
Expression (9.16) is called the ray method expansion in the time domain.

But now it is clear that since equation (9.13) holds true only for the large
frequency, formula (9.15) and respectively series (9.16) contain a systematic error
due to asymptotics (9.13) having been extended somehow on a small ω during the
process of integration. Hence, along with an approximate expression (9.16) for
the wave field, we should have some background. Evidently, such background is a
smooth function of t (see previous section), and it does not influence jumps of the
wave field precisely on the wavefront t = τ .

Taking into account all these considerations we may say that the ray method in
the time domain is the asymptotics of the wave field with respect to smoothness.

9.4 The Gaussian Beam method in the time do-
main

A standard way of employing the Gaussian beam method for non-stationary prob-
lems is to replace the function ~G(M,Mo;ω) in equation (9.7) by the integral over
Gaussian beams. In this case it is necessary to compute the Fourier transform for
every Gaussian beam that contributes to the wave field at an observation pointM .
This is precisely what a number of papers in geophysics has used- see the review
paper by Červený (1985) and Babich and Popov (1989).

There is a different approach based on the space-time Gaussian beams - see
Popov (1987). A brief description of its main ideas is as follows.

We have constructed some asymptotic solutions of non-stationary elastody-
namic equations which preserve the fundamental properties of Gaussian beams in
the frequency domain: each solution is related to a bicharacteristic and has no
singularities. Naturally, it depends upon time and space variables. These solu-
tions are called the space-time Gaussian beams (or quasi-jets). We remind that
in the case of a 2D homogeneous medium the bicharacteristics are straight lines
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- see section 9.1 formula (9.11). Next we construct the asymptotics of the wave
field in the time domain directly by integrating the space-time Gaussian beams
over the ray parameters just as we do in the frequency domain. This method is
adequate to situations when the wave field is formed by waves modulated both in
the frequency and the amplitude and the wavelet is given by formula (9.4). For
applications of the method see Kachalov and Popov (1988, 1990). Unfortunately,
the method requires a rather detailed description and therefore we do not present
it here.
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APPENDIX A
Integrals of oscillating functions

Consider an integral

I =

∫ b

a

g(x)eiωf(x)dx

where ω is supposed to be large, i.e. ω → ∞. Suppose, g(x) and f(x) are
sufficiently smooth functions, i.e. they can be differentiated on the interval (a, b)
as many times as we need.

Let us assume, that f ′(x) 6= 0 for all x from the interval [a, b]. Then the
asymptotics of I as ω →∞ can be obtained by the integration in parts

I =

∫ b

a

eiωf(x)
g(x)

f ′(x)
df =

eiωf(x)

iω

g(x)

f ′(x)

∣

∣

∣

∣

x=b

x=a

− 1

iω

∫ b

a

eiωf(x)
(

g(x)

f ′(x)

)′

dx .

If we integrate the latter integral in parts again we shall conclude that it is of
order O

(

ω−2
)

.

Thus, it follows from the above that the main term of the asymptotics of I for
a large ω reads

I =
1

iω

[

eiωf(b)
g(b)

f ′(b)
− eiωf(a) g(a)

f ′(a)

]

+ 0

(

1

ω2

)

.

A.1 Geometrical interpretation

By recollecting the geometrical sense of an integral as the area between the x-axis
and the graph of the integrand, we can present the following interpretation of
the result described above. Due to the fast oscillations of Re (g(x) exp(iωf(x))
and Im (g(x) exp(iωf(x)) as well, the areas with opposite signs compensate each
other except for those two, which join the end points of integration. But with the
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a
x

b

Re geiωf

+

−

+

−
+

−
+

Figure A.1: Fast oscillations of the integrand cause compensation of areas with
opposite signs.

increasing ω those areas tend to zero too. Thus, the whole integral is almost equal
to zero for a large ω.

Suppose now f ′(xo) = 0 at the point xo ∈ (a, b). In this case in a vicinity of
the point x = xo the integrand does not oscillate.

Indeed, we can present exp(iωf) as follows

exp(iωf) = exp
(

iω[f(xo) + f ′(xo)(x− xo) + · · · ]
)

and the oscillation period T can be estimated by the formula T = 2π/(ωf ′(xo)).

Now, if f ′(xo) is small, period T is large and, hence, there are no oscillations
(practically!) in a vicinity of x = xo.

Definition: A point x = xo is called the stationary point of a phase function
f(x) or, sometimes, the critical point of the integral I if f ′(xo) = 0.

Suppose further that I has only one critical point x = xo distant from both
ends a and b.

To derive the asymptotics of I in this case we divide the integral into the
following three parts I = Ia + Ic.p. + Ib, where

Ia =

∫ xo−∆

a

geiωfdx , Ic.p. =

∫ xo+∆

xo−∆

geiωfdx and Ib =

∫ b

xo+∆

geiωfdx ,

and ∆ is an auxiliary parameter that separates an interval with the stationary
point.
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A.2 Contribution of the critical point

Consider the leading term of the asymptotics coming out from Ic.p.. In a vicinity
of xo we expand f(x) and g(x) in power series

f(x) = f(xo) +
1

2
f ′′(xo)(x− xo)2 + · · · ,

g(x) = g(xo) + · · · ,

so that now

Ic.p. =

∫ xo−∆

xo+∆

(

g(xo) + · · ·
)

eiω[f(xo)+
1
2 f

′′(xo)(x−xo)
2+··· ]dx '

' g(xo)e
iωf(xo)

∫ xo+∆

xo−∆

ei
ω
2 f

′′(xo)(x−xo)
2

dx+ · · · .

In order to get the main term of the asymptotics we have to take into account
only the first item in the latter expression.

Let us present a second derivative of the function f(x) in the form

f ′′(xo) = sgn
(

f ′′(xo)
) ∣

∣f ′′(xo)
∣

∣ .

Then we develop the integral

∫ xo+∆

xo−∆

exp

[

iω

2
f ′′(xo)(x− xo)2

]

dx

as follows

∫ xo+∆

xo−∆

exp
[

i
ω

2
sgn (f

′′

(xo))|f ′′(xo)|(x− xo)2
]

dx =

=

√

2

ω|f ′′(xo)|

∫ ∆1

−∆1

exp
[

i sgn (f
′′

(xo))ξ
2
]

dξ ,

where ξ is related to x by the formula ξ =
√

(ω/2)|f ′′(xo)|(x − xo). A new limit

of integration ∆1 is given by the expression ∆1 =
√

(ω/2)|f ′′(xo)|∆. Note that
∆1 contains the large parameter ω and tends to infinity as ω →∞.

Let us introduce a new variable ρ by the formula

ξ = ρ exp
[

i
π

4
sgn (f

′′

(xo)
]

,

then

∫ ∆1

−∆1

exp
[

i sgn
(

f
′′

(xo)
)

ξ2
]

dξ = exp
[

i
π

4
sgn

(

f
′′

(xo)
)

]

∫ ∆2

−∆2

e−ρ
2

dρ
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where this time
∆2 = ∆1 exp

[

−iπ
4

sgn
(

f
′′

(xo)
)

]

.

The last step in the development of the integral consists in extending the

integral
∫∆2

−∆2
e−ρ

2

dρ over the whole real axis, i.e. over (−∞,+∞), obtaining

∫ +∞

−∞

e−ρ
2

dρ =
√
π .

Now by gathering all auxiliary results we obtain the main term of the contri-
bution of the stationary point x = xo

Ic.p. ∼= g(xo)e
iωf(xo)

√

2π

ω|f ′′(xo)|
ei(π/4) sgn (f

′′
(xo)) .

The subsequent term of the integral Ic.p. will have a multiplier 1/
√
ω (after

introducing a new variable ξ instead of x !) and therefore it will be of order
O (1/ω), i.e. 1/

√
ω time less than the leading one.

The contributions of Ia and Ib can be obtained by means of integration in parts
and will be of order O (1/ω) (see the beginning of this Appendix).
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Index

Airy function, 38
amplitude, 51, 53
angle

incident, 94
reflected, 94

asymptotic series, 9
of a function, 8
of a wave field, 37

Cauchy data, 139
caustic, 35

problems, 35
surface, 36

center of dilation, 139
center of rotation, 139
compound functions, 52
coordinates

local, 80
non-orthogonal, 45
ray centered, 41

critical angle, 78
critical point, see stationary point
curvature, 44

diffusion, 32
Dirichlet’s condition, 75
displacement vector, 93
divergence, 23

eigenvectors, 91
eikonal, 21, 52
elastodynamic equations, 139
energy

density, 31–33
flow, 33, 35
law of conservation, 34

equation

eikonal, 7, 8
in variation, 48, 54, 121

for the initial Hamiltonian
system, 47

of motion, 89
transport, 7, 8

Euler’s equations, 14, 15
in Hamiltonian form, 16, 42, 54
in Lagrangian form, 16

Fermat’s
functional, 42
integral, 12

in Hamiltonian form, 43
principle, 12

flux, 24
Fourier transform, 140
Frenet’s formulas, 44
frequency, 6
functional determinant, 22, 52

and geometrical sense, 23
and scalar factor, 23

Gauss-Ostrogradskii formula, 34
Gaussian beam

shear wave, 117
space-time, 144
width, 122–123

Gaussian Beam method, 38
Gaussian functions, 122
geometrical spreading, 24, 35,

51–57, 80–86
on the reflected central ray, 88

Hamiltonian, 16
Hamiltonian equations, 43
Hamiltonian function, 43
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and Taylor series, 46
Hankel’s function, 73
Helmholtz equation, 7
Hermitian conjugate matrix, 118
Huygen’s principle, 20

incident central ray, 80

J-scalar product, 50
Jacobian, 51

Lagrangian, 12
Lame’s coefficients, 51
Laplace operator, 5

Maslov’s method, 38

Neumann’s condition, 75

paraxial ray, 116
theory, 3

phase function, 89, 92
point of incidence, 80
point source, 35
pulse, 16

ray
high-frequency approximation,

35
method

modified, 37
validity, 10

series, 7
in the frequency domain, 143
in the time domain, 144

tube, 24, 31, 54, 80
ray parameters, 52
reflected central rays, 83
reflection coefficient, 79, 97
refracted central rays, 83
Ricatti’s equation, 63

slowness, 16, 56
vector, 91

Snell’s law, 78, 94
stationary and non-stationary

problem, 140

stationary point
main term contribution, 150
of a phase function, 148

stress tensor, 92
symplectic matrix, 86

tangent incidence, 86
torsion, 44
traction free surface, 92

boundary conditions, 92
transmission coefficient, 79

vector-amplitude, 89–91

wave
amplitude, 6
catastrophes, 37, 38
compressional, 90

polarization, 91
velocity, 90

de-polarization, 114
equation, 5
field, 5

energy, 32
source, 139

phase, 6
plane, 6

deformed, 7
reflected, 76
shear, 91

polarization, 91
velocity, 91

transmitted, 76
vector, 6, 91

projection, 94
wavefront, 19, 20
wavelength, 6


